\begin{ccRefConcept}{IntegralDomain} \ccDefinition \ccc{IntegralDomain} refines \ccc{IntegralDomainWithoutDivision} by providing an integral division.\\ {\bf Note:} The concept does not require the operator / for this operation. We intend to reserve the operator syntax for use with a \ccc{Field}. %Nevertheless, some non-field models of IntegralDomain have one. Moreover, \ccc{CGAL::Algebraic_structure_traits< IntegralDomain >} is a model of \ccc{AlgebraicStructureTraits} providing:\\ - \ccc{CGAL::Algebraic_structure_traits< IntegralDomain >::Algebraic_type} derived from \ccc{Integral_domain_tag} \\ - \ccc{CGAL::Algebraic_structure_traits< IntegralDomain >::Integral_division}\\ - \ccc{CGAL::Algebraic_structure_traits< IntegralDomain >::Divides}\\ \ccRefines \ccc{IntegralDomainWithoutDivision} \ccSeeAlso \ccRefIdfierPage{IntegralDomainWithoutDivision}\\ \ccRefIdfierPage{IntegralDomain}\\ \ccRefIdfierPage{UniqueFactorizationDomain}\\ \ccRefIdfierPage{EuclideanRing}\\ \ccRefIdfierPage{Field}\\ \ccRefIdfierPage{FieldWithSqrt}\\ \ccRefIdfierPage{FieldWithKthRoot}\\ \ccRefIdfierPage{FieldWithRootOf}\\ \ccRefIdfierPage{AlgebraicStructureTraits}\\ %\ccHasModels %\CC\ built-in number types \\ %\ccc{CGAL::Gmpq} \\ %\ccc{CGAL::Gmpz} \\ %\ccc{CGAL::Gmpzf} \\ %\ccc{mpz_class} \\ %\ccc{mpq_class} \\ %%\ccc{mpf_class} \\ %\ccc{leda_integer} \\ %\ccc{leda_rational} \\ %\ccc{leda_bigfloat} \\ %\ccc{leda_real} \\ %\ccc{CORE::BigInt} \\ %\ccc{CORE::BigRat} \\ %%\ccc{CORE::BigFloat} \\ %\ccc{CORE::Expr} \\ %%\ccc{CGAL::Interval_nt} \\ %%\ccc{CGAL::Interval_nt_advanced} \\ %\ccc{CGAL::MP_Float} \\ %\ccc{CGAL::Lazy_exact_nt< NT >} (depends on NT) \\ %\ccc{CGAL::Quotient< NT >} \\ %\ccc{CGAL::Sqrt_extension< NT, Root >} \\ %%\ccc{CGAL::Polynomial< T >} \\ \end{ccRefConcept}