\begin{ccRefConcept}{RealEmbeddable} \ccDefinition A model of this concepts represents numbers that are embeddable on the real axis. The type obeys the algebraic structure and compares two values according to the total order of the real numbers. Moreover, \ccc{CGAL::Real_embeddable_traits< RealEmbeddable >} is a model of \ccc{RealEmbeddableTraits}\\ with:\\ - \ccc{CGAL::Real_embeddable_traits< RealEmbeddable >::Is_real_embeddable} set to \ccc{Tag_true} \\ and functors :\\ - \ccc{CGAL::Real_embeddable_traits< RealEmbeddable >::Is_zero} \\ - \ccc{CGAL::Real_embeddable_traits< RealEmbeddable >::Abs} \\ - \ccc{CGAL::Real_embeddable_traits< RealEmbeddable >::Sign} \\ - \ccc{CGAL::Real_embeddable_traits< RealEmbeddable >::Is_positive} \\ - \ccc{CGAL::Real_embeddable_traits< RealEmbeddable >::Is_negative} \\ - \ccc{CGAL::Real_embeddable_traits< RealEmbeddable >::Compare} \\ - \ccc{CGAL::Real_embeddable_traits< RealEmbeddable >::To_double} \\ - \ccc{CGAL::Real_embeddable_traits< RealEmbeddable >::To_interval} \\ Remark:\\ If a number type is a model of both IntegralDomainWithoutDivision and RealComparable, it follows that the ring represented by such a number type is a sub-ring of the real numbers and hence has characteristic zero. %( see http://mathworld.wolfram.com/CharacteristicField.html ). \ccRefines \ccc{Equality Comparable}\\ \ccc{LessThanComparable} \ccOperations \ccFunction{bool operator==(const RealEmbeddable &a, const RealEmbeddable &b);}{} \ccGlue \ccFunction{bool operator!=(const RealEmbeddable &a, const RealEmbeddable &b);}{} \ccFunction{bool operator< (const RealEmbeddable &a, const RealEmbeddable &b);}{} \ccGlue \ccFunction{bool operator<=(const RealEmbeddable &a, const RealEmbeddable &b);}{} \ccGlue \ccFunction{bool operator> (const RealEmbeddable &a, const RealEmbeddable &b);}{} \ccGlue \ccFunction{bool operator>=(const RealEmbeddable &a, const RealEmbeddable &b);}{} \ccGlue \ccSeeAlso \ccRefIdfierPage{RealEmbeddableTraits}\\ %\ccHasModels \end{ccRefConcept}