\begin{ccRefConcept}{RealEmbeddableTraits} \ccDefinition A model of \ccc{RealEmbeddableTraits} is associated to a number type \ccc{Type} and reflects the properties of this type with respect to the concept \ccc{RealEmbeddable}. \ccTypes A model of \ccc{RealEmbeddableTraits} is supposed to provide:\\ \ccNestedType{Type}{The associated number type.} \ccNestedType{Is_real_embeddable} { Tag indicating whether the associated type is real embeddable. \\ This is either \ccc{CGAL::Tag_true} or \ccc{CGAL::Tag_false}. } \ccHeading{Functors} In case the associated type is \ccc{RealEmbeddable} all functors are provided.\\ In case a functor is not provided, it is set to \ccc{CGAL::Null_functor}. \ccNestedType{Is_zero}{ A model of \ccc{RealEmbeddableTraits::IsZero} In case \ccc{Type} is also model of \ccc{IntegralDomainWithoutDivision} this is a model of \ccc{AlgebraicStructureTraits::IsZero}.} \ccNestedType{Abs}{ A model of \ccc{RealEmbeddableTraits::Abs} } \ccNestedType{Sign}{ A model of \ccc{RealEmbeddableTraits::Sign} } \ccNestedType{Is_positive}{ A model of \ccc{RealEmbeddableTraits::IsPositive} } \ccNestedType{Is_negative}{ A model of \ccc{RealEmbeddableTraits::IsNegative} } \ccNestedType{Compare}{ A model of \ccc{RealEmbeddableTraits::Compare} } \ccNestedType{To_double}{ A model of \ccc{RealEmbeddableTraits::ToDouble} } \ccNestedType{To_interval}{ A model of \ccc{RealEmbeddableTraits::ToInterval} } %\ccNestedType{Is_finite}{ A model of \ccc{RealEmbeddableTraits::IsFinite} } \ccHasModels \ccRefIdfierPage{CGAL::Real_embeddable_traits}\\ \end{ccRefConcept}