\begin{ccRefFunction}{div_mod} \ccDefinition The function \ccRefName\ computes the integral quotient and remainder of division with remainder. In case the argument types \ccc{NT1} and \ccc{NT2} differ, the \ccc{result_type} is determined via \ccc{Coercion_traits}.\\ Thus, the \ccc{result_type} is well defined if \ccc{NT1} and \ccc{NT2} are a model of \ccc{ExplicitInteroperable}. \\ The actual \ccRefName\ is performed with the semantic of that type. The function is guaranteed to be well defined in case \ccc{result_type} is a model of the \ccc{EuclideanRing} concept. \ccInclude{CGAL/number_utils.h} \ccFunction{ template void div_mod(const NT1& x, const NT2& y, result_type& q, result_type& r); }{ computes the quotient $q$ and remainder $r$, such that $x = q*y + r$ and $r$ minimal with respect to the Euclidean Norm of the \ccc{result_type}. } \ccSeeAlso \ccRefConceptPage{EuclideanRing}\\ \ccRefConceptPage{AlgebraicStructureTraits::DivMod}\\ \ccRefIdfierPage{CGAL::mod}\\ \ccRefIdfierPage{CGAL::div}\\ \end{ccRefFunction}