\begin{ccRefFunction}{integral_division} \ccDefinition The function \ccRefName\ (a.k.a. exact division or division without remainder) maps ring elements $(x,y)$ to ring element $z$ such that $x = yz$ if such a $z$ exists (i.e. if $x$ is divisible by $y$). Otherwise the effect of invoking this operation is undefined. Since the ring represented is an integral domain, $z$ is uniquely defined if it exists. In case the argument types \ccc{NT1} and \ccc{NT2} differ, the \ccc{result_type} is determined via \ccc{Coercion_traits}.\\ Thus, the \ccc{result_type} is well defined if \ccc{NT1} and \ccc{NT2} are a model of \ccc{ExplicitInteroperable}. \\ The actual \ccRefName\ is performed with the semantic of that type. The function is guaranteed to be well defined in case \ccc{result_type} is a model of the \ccc{IntegralDomain} concept. \ccInclude{CGAL/number_utils.h} \ccFunction{template result_type integral_division(const NT1& x, const NT2& y);}{} \ccSeeAlso \ccRefConceptPage{IntegralDomain}\\ \ccRefConceptPage{AlgebraicStructureTraits::IntegralDivision}\\ \end{ccRefFunction}