\begin{ccRefFunction}{mod} \ccDefinition The function \ccRefName\ computes the remainder of division with remainder. In case the argument types \ccc{NT1} and \ccc{NT2} differ, the \ccc{result_type} is determined via \ccc{Coercion_traits}.\\ Thus, the \ccc{result_type} is well defined if \ccc{NT1} and \ccc{NT2} are a model of \ccc{ExplicitInteroperable}. \\ The actual \ccRefName\ is performed with the semantic of that type. The function is guaranteed to be well defined in case \ccc{result_type} is a model of the \ccc{EuclideanRing} concept. \ccInclude{CGAL/number_utils.h} \ccFunction{ template< class NT1, class NT2> result_type mod(const NT1& x, const NT2& y);}{} \ccSeeAlso \ccRefConceptPage{EuclideanRing}\\ \ccRefConceptPage{AlgebraicStructureTraits::DivMod}\\ \ccRefIdfierPage{CGAL::div_mod}\\ \ccRefIdfierPage{CGAL::div}\\ \end{ccRefFunction}