\begin{ccRefConcept}{AlgebraicKernel_2_2::ConstructPolynomial_1_2} \ccDefinition \ccCreationVariable{cpol} A model \ccVar\ of this type must provide: \ccMethod{AlgebraicKernel_2_2::Polynomial_1_2 operator()(const AlgebraicKernel_2_2::RT a, const AlgebraicKernel_2_2::RT b, const AlgebraicKernel_2_2::RT c);} {Constructs polynomial \ccc{ax+by+c}.} \end{ccRefConcept} \begin{ccRefConcept}{AlgebraicKernel_2_2::ConstructPolynomialForCircles_2_2} \ccCreationVariable{cpol} A model \ccVar\ of this type must provide: \ccMethod{AlgebraicKernel_2_2::PolynomialForCircles_2_2 operator()(const AlgebraicKernel_2_2::FT a, const AlgebraicKernel_2_2::FT b, const AlgebraicKernel_2_2::FT rsq);} {Constructs polynomial \ccc{(x-a)^2 + (y-b)^2 - rsq}.} \end{ccRefConcept} \begin{ccRefConcept}{AlgebraicKernel_2_2::Solve} \ccDefinition \ccCreationVariable{sol} A model \ccVar\ of this type must provide: \ccMethod{template < class OutputIterator > OutputIterator operator()(const AlgebraicKernel_2_2::Polynomial_1_2 &p1, const AlgebraicKernel_2_2::Polynomial_1_2 &p2, OutputIterator res);} {Copies in the output iterator the common roots of \ccc{p1} and \ccc{p2}, with their multiplicity, as objects of type \ccc{std::pair< AlgebraicKernel_2_2::RootForCircles_2_2, int>}.} \footnote{???} \ccMethod{template < class OutputIterator > OutputIterator operator()(const AlgebraicKernel_2_2::Polynomial1_2 &p1, const AlgebraicKernel_2_2::PolynomialForCircles_2_2 &p2, OutputIterator res);} {Same as previous.} \ccMethod{template < class OutputIterator > OutputIterator operator()(const AlgebraicKernel_2_2::PolynomialForCircles_2_2 &p1, const AlgebraicKernel_2_2::PolynomialForCircles_2_2 &p2, OutputIterator res);} {Same as previous.} \ccHasModels \ccc{Algebraic_kernel_2_2::Solve;} \ccSeeAlso \ccRefIdfierPage{CGAL::solve} \end{ccRefConcept} \begin{ccRefConcept}{AlgebraicKernel_4_2::Solve} \ccDefinition \ccCreationVariable{sol} A model \ccVar\ of this type must provide: \ccMethod{template < class OutputIterator > OutputIterator operator()(const AlgebraicKernel_4_2::Polynomial_2_2 &p1, const AlgebraicKernel_4_2::Polynomial_2_2 &p2, OutputIterator res);} {Copies in the output iterator the common roots of \ccc{p1} and \ccc{p2}, with their multiplicity, as objects of type \ccc{std::pair< AlgebraicKernel_4_2::RootOf_4, int>}.} \ccHasModels \ccc{Algebraic_kernel_2_2::Solve;} \ccSeeAlso \ccRefIdfierPage{CGAL::solve} \end{ccRefConcept} \begin{ccRefConcept}{AlgebraicKernel_2_2::XCriticalPoints} \ccDefinition \ccCreationVariable{xcrit} A model \ccVar\ of this type must provide: \ccMethod{template < class OutputIterator > OutputIterator operator()(const AlgebraicKernel_2_2::PolynomialForCircles_2_2 &p, OutputIterator res);} {Copies in the output iterator the \ccc{x}-critical points of polynomial \ccc{p}, as objects of type \ccc{AlgebraicKernel_2_2::RootForCircles_2_2}.} \ccMethod{template < class OutputIterator > AlgebraicKernel_2_2::RootForCircles_2_2 operator()(const AlgebraicKernel_2_2::PolynomialForCircles_2_2 &p, bool i);} {Computes the \ccc{i}th \ccc{x}-critical point of polynomial \ccc{p}.} \ccHasModels \ccc{Algebraic_kernel_2_2::X_critical_points;} \ccSeeAlso \ccRefIdfierPage{CGAL::x_critical_points} \end{ccRefConcept} \begin{ccRefConcept}{AlgebraicKernel_2_2::YCriticalPoints} \ccDefinition \ccCreationVariable{ycrit} A model \ccVar\ of this type must provide: \ccMethod{template < class OutputIterator > OutputIterator operator()(const AlgebraicKernel_2_2::PolynomialForCircles_2_2 &p, OutputIterator res);} {Copies in the output iterator the \ccc{y}-critical points of polynomial \ccc{p}, as objects of type \ccc{AlgebraicKernel_2_2::RootForCircles_2_2}.} \ccMethod{template < class OutputIterator > AlgebraicKernel_2_2::RootForCircles_2_2 operator()(const AlgebraicKernel_2_2::PolynomialForCircles_2_2 &p, bool i);} {Computes the \ccc{i}th \ccc{y}-critical point of polynomial \ccc{p}.} \ccHasModels \ccc{Algebraic_kernel_2_2::Y_critical_points;} \ccSeeAlso \ccRefIdfierPage{CGAL::y_critical_points} \end{ccRefConcept}