\begin{ccRefConcept}{PolynomialToolBox_d} \ccDefinition A model of \ccc{PolynomialToolBox_d} is associated to an type \ccc{Polynomial_d}, representing a multivariate polynomial \footnote{Univariate polynomials are not excluded by this concept.}. The number of variables is denoted as the dimension $d$ of the polynomial, it is arbitrary but fixed for a certain model of this concept. \ccRefines \ccc{PolynomialTraits_d} %\ccConstants %\ccTypes \ccHeading{Functors} In case a functor is not provided it is set to \ccc{CGAL::Null_functor}. %,e.g., \ccc{Sign_at} if \ccc{Innermost_coefficient_type} is not \ccc{RealEmbeddable}. \ccSetTwoColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{} \ccNestedType{Univariate_content}{ In case \ccc{PolynomialTraits_d::Coefficient_type} is {\bf not} a model of \ccc{UniqueFactorizationDomain}, this is \ccc{CGAL::Null_type}, otherwise this is a model of \ccc{PolynomialTraits_d::UnivariateContent}.} %\begin{ccAdvanced} \ccNestedType{Multivariate_content}{ In case \ccc{PolynomialTraits_d::Innermost_coefficient_type} is {\bf not} a model of \ccc{UniqueFactorizationDomain}, this is \ccc{CGAL::Null_type}, otherwise this is a model of \ccc{PolynomialTraits_d::MultivariateContent}.} %\end{ccAdvanced} %Manipulation \ccNestedType{Shift}{ A model of \ccc{PolynomialTraits_d::Shift}.}\ccGlue \ccNestedType{Negate}{ A model of \ccc{PolynomialTraits_d::Negate}.}\ccGlue \ccNestedType{Invert}{ A model of \ccc{PolynomialTraits_d::Invert}.} \ccNestedType{Translate}{ A model of \ccc{PolynomialTraits_d::Translate}.}\ccGlue \ccNestedType{Translate_homogeneous} { A model of \ccc{PolynomialTraits_d::TranslateHomogeneous}.} \ccNestedType{Scale}{ A model of \ccc{PolynomialTraits_d::Scale}.}\ccGlue \ccNestedType{Scale_homogeneous} { A model of \ccc{PolynomialTraits_d::ScaleHomogeneous}.} %\begin{ccAdvanced} %\ccNestedType{Scale_up}{ A model of \ccc{PolynomialTraits_d::ScaleUp, return $p(a*x)$}.} %\ccNestedType{Scale_down}{ A model of \ccc{PolynomialTraits_d::ScaleDown, return $b^{degree}*p(x/b)$}.} %\end{ccAdvanced} %unary operations \ccNestedType{Make_square_free} { A model of \ccc{PolynomialTraits_d::MakeSquareFree}.}\ccGlue \ccNestedType{Square_free_factorize} { In case \ccc{PolynomialTraits::Polynomial_d} is not a model of \ccc{UniqueFactorizationDomain}, this is of type \ccc{CGAL::Null_type}, otherwise this is a model of \ccc{PolynomialTraits_d::SquareFreeFactorize}.} %pseudo division \ccNestedType{Pseudo_division } { A model of \ccc{PolynomialTraits_d::Pseudo_division}.}\ccGlue \ccNestedType{Pseudo_division_remainder} { A model of \ccc{PolynomialTraits_d::Pseudo_division_remainder}.}\ccGlue \ccNestedType{Pseudo_division_quotient } { A model of \ccc{PolynomialTraits_d::Pseudo_division_quotient}.} %utcf \ccNestedType{Gcd_up_to_constant_factor} { A model of \ccc{PolynomialTraits_d::GcdUpToConstantFactor}.} \ccGlue \ccNestedType{Integral_division_up_to_constant_factor} { A model of \ccc{PolynomialTraits_d::IntegralDivisionUpToConstantFactor}.} \ccGlue \ccNestedType{Content_up_to_constant_factor} { A model of \ccc{PolynomialTraits_d::ContentUpToConstantFactor}.} \ccGlue \ccNestedType{Square_free_factorize_up_to_constant_factor} { A model of \ccc{PolynomialTraits_d::SquareFreeFactorizeUpToConstantFactor}.} %resultant \ccNestedType{Resultant}{ A model of \ccc{PolynomialTraits_d::Resultant}.} \ccNestedType{Polynomial_subresultants} { A model of \ccc{PolynomialTraits_d::PolynomialSubresultant}.} \ccNestedType{Principal_subresultants} { A model of \ccc{PolynomialTraits_d::PrincipalSubresultant}.} \ccNestedType{Sturm_habicht_sequence} { A model of \ccc{PolynomialTraits_d::SturmHabichtSequence}.} \ccNestedType{Sturm_habicht_sequence_with_cofactors} { A model of \ccc{PolynomialTraits_d::SturmHabichtSequenceWithCofactors}.} \ccNestedType{Principal_sturm_habicht_sequence} { A model of \ccc{PolynomialTraits_d::PrincipalSturmHabichtSequence}.} % end ccIgnore \ccSeeAlso \ccRefIdfierPage{Polynomial_d}\\ \ccRefIdfierPage{PolynomialTraits_d}\\ \end{ccRefConcept}