\begin{ccRefConcept}{PolynomialTraits_d::EvaluateHomogeneous} \ccDefinition This \ccc{AdaptableFunctor} interprets a \ccc{PolynomialTraits_d::Polynomial_d} as a homogeneous polynomial with respect to one variable, an provides respective evaluation. \ccRefines \ccc{AdaptableFunctor} \ccTypes \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccTypedef{typedef PolynomialTraits_d::Coefficient result_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Innermost_coefficient second_argument_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Innermost_coefficient third_argument_type;}{}\ccGlue \ccTypedef{typedef int fourth_argument_type;}{}\ccGlue \ccTypedef{typedef int fifth_argument_type;}{} \ccOperations \ccMethod{result_type operator()(first_argument_type p, second_argument_type u, third_argument_type v));} { return $p(u,v)$, with respect to the outermost variable. \\ The homogeneous degree is considered as equal to the degree of $p$. } \ccMethod{result_type operator()(first_argument_type p, second_argument_type u, third_argument_type v, fourth_argument_type h));} { return $p(u,v)$, with respect to the outermost variable. \\ The homogeneous degree is $h$. \ccPrecond: $h \geq degree(p)$ } \ccMethod{result_type operator()(first_argument_type p, second_argument_type u, third_argument_type v, fourth_argument_type h, fifth_argument_type i));} { return $p(u,v)$, with respect to the variable $x_i$. \\ The homogeneous degree is $h$. \ccPrecond $h \geq degree_i(p)$ \ccPrecond $0 < i \leq d$} %\ccHasModels \ccSeeAlso \ccRefIdfierPage{Polynomial_d}\\ \ccRefIdfierPage{PolynomialTraits_d}\\ \end{ccRefConcept}