\begin{ccRefConcept}{Polynomial_d} \ccDefinition A model \ccc{Polynomial_d} possesses a traits class \ccc{CGAL::Polynomial_traits_d}, which is a model of \ccc{PolynomialTraits_d}. An \ccc{Polynomial_d} represents a multivariate polynomial over some basic ring $R$, this type is denoted as the innermost coefficient type and is accessible through the traits class \ccc{CGAL::Polynomial_traits_d::Innermost_coefficient}. \ccRefines \ccc{Polynomial_d} and \ccc{Innermost_coefficient} are at least a model of \ccc{IntegralDomainWithoutDiv}. \\ Moreover, the algebraic structure of \ccc{Polynomial} depends on the algebraic structure of \ccc{Innermost_coefficient}: \begin{tabular}{|l|l|} \hline \ccc{Innermost_coefficient}&\ccc{Polynomial_d}\\ \hline \ccc{IntegralDomainWithoutDiv}&\ccc{IntegralDomainWithoutDiv}\\ \ccc{IntegralDomain}&\ccc{IntegralDomain}\\ \ccc{UFDomain}&\ccc{UFDomain}\\ \ccc{EuclideanRing}&\ccc{UFDomain}\\ \ccc{Field}&\ccc{UFDomain}\\ \hline \end{tabular} Note:The concept \ccc{Polynomial_1} refines \ccc{EuclideanRing} in case \ccc{Innermost_coefficient} is a \ccc{Field}. \ccSeeAlso \ccRefIdfierPage{AlgebraicStructureTraits}\\ \ccRefIdfierPage{PolynomialTraits_d}\\ \ccHasModels \end{ccRefConcept}