\begin{ccRefConcept}{PolynomialTraits_d::TotalDegree} \ccDefinition This \ccc{AdaptableUnaryFunction} computes the total degree of a \ccc{PolynomialTraits_d::Polynomial_d}. Given a (multivariate) monomial the sum of all appearing exponents is the total degree of this monomial. The total degree of a polynomial $p$ is the maximum of the total degrees of all appearing (multivariate) monomials in $p$.\\ For instance the total degree of $p = x_0^2x_1^3+x_1^4$ is $5$. The total degree of the zero polynomial is set to $0$. From the mathematical point of view this should be $-inf$, but this would imply an inconvenient return type. \ccRefines \ccc{AdaptableUnaryFunction}\\ \ccc{CopyConstructible}\\ \ccc{DefaultConstructible}\\ \ccTypes \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccTypedef{typedef int result_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d argument_type;}{} \ccOperations \ccCreationVariable{fo} \ccMethod{result_type operator()(argument_type p);} {Computes the total degree of $p$.} %\ccHasModels \ccSeeAlso \ccRefIdfierPage{Polynomial_d}\\ \ccRefIdfierPage{PolynomialTraits_d}\\ \ccRefIdfierPage{PolynomialTraits_d::Degree}\\ \ccRefIdfierPage{PolynomialTraits_d::DegreeVector} \end{ccRefConcept}