\begin{ccRefConcept}{PolynomialTraits_d::Canonicalize} \ccDefinition For a given polynomial $p$ this \ccc{AdaptableUnaryFunction} computes the unique representative of the set \[{\cal P} := \{ q\ |\ \lambda * q = p\ for\ some\ \lambda \in R \},\] where $R$ is the base of the polynomial ring. In case \ccc{PolynomialTraits::Innermost_coefficient_type} is a model of \ccc{Field}, the computed polynomial is the {\em monic} polynomial in {$\cal P$}, that is, the innermost leading coefficient equals one.\\ In case \ccc{PolynomialTraits::Innermost_coefficient_type} is a model of \ccc{UniqueFactorizationDomain}, the computed polynomial is the one with a multivariate content of one.\\ For all other cases the notion of uniqueness is up to the concrete model. Note that the computed polynomial has the same zero set as the given one. \ccRefines \ccc{AdaptableUnaryFunction} \ccTypes \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d argument_type;}{} \ccOperations \ccCreationVariable{fo} \ccMethod{result_type operator()(first_argument_type p);}{ Returns the canonical representative of $p$.} %\ccHasModels \ccSeeAlso \ccRefIdfierPage{Polynomial_d}\\ \ccRefIdfierPage{PolynomialTraits_d}\\ \end{ccRefConcept}