\begin{ccRefConcept}{Polynomial_d} \ccDefinition A model of \ccRefName\ is representing a multivariate polynomial in $d$ variables over some basic ring $R$. This type is denoted as the innermost coefficient. A model of \ccRefName\ accompanied by a traits class \ccc{CGAL::Polynomial_traits_d}, which is a model of \ccc{PolynomialTraits_d}. Please have a look at the concept \ccc{PolynomialTraits_d}, since nearly all functionality related to polynomials is provided by the traits. %The innermost coefficient type of the polynomial is accessible through %the traits, that is, the traits provides the public type %\ccc{CGAL::Polynomial_traits_d::Innermost_coefficient_type}. \ccRefines \ccc{IntegralDomainWithoutDivision} \\ The algebraic structure of \ccc{Polynomial_d} depends on the algebraic structure of \ccc{Innermost_coefficient_type}: \begin{tabular}{|l|l|} \hline \ccc{Innermost_coefficient_type}&\ccc{Polynomial_d}\\ \hline \ccc{IntegralDomainWithoutDivision}&\ccc{IntegralDomainWithoutDivision}\\ \ccc{IntegralDomain}&\ccc{IntegralDomain}\\ \ccc{UniqueFactorizationDomain}&\ccc{UFDomain}\\ \ccc{EuclideanRing}&\ccc{UniqueFactorizationDomain}\\ \ccc{Field}&\ccc{UniqueFactorizationDomain}\\ \hline \end{tabular} Note: In case the polynomial is univariate and the innermost coefficient is a \ccc{Field} the polynomial is model of \ccc{EuclideanRing}. %Note:The concept \ccc{Polynomial_1} refines \ccc{EuclideanRing} in case %\ccc{Innermost_coefficient_type} is a \ccc{Field}. \ccSeeAlso \ccRefIdfierPage{AlgebraicStructureTraits}\\ \ccRefIdfierPage{PolynomialTraits_d}\\ \ccHasModels \ccRefIdfierPage{CGAL::Polynomial} \end{ccRefConcept}