\begin{ccRefConcept}{PolynomialTraits_d::Degree} \ccDefinition This \ccc{AdaptableUnaryFunction} computes the degree of a \ccc{PolynomialTraits_d::Polynomial_d} with respect to a certain variable. The degree of $p$ with respect to a certain variable $x_i$, is the highest power $e$ of $x_i$ such that the coefficient of $x_i^{e}$ in $p$ is not zero.\\ For instance the degree of $p = x_0^2x_1^3+x_1^4$ with respect to $x_1$ is $4$. The degree of the zero polynomial is set to $0$. From the mathematical point of view this should be $-infinity$, but this would imply an inconvenient return type. \ccRefines \ccc{AdaptableUnaryFunction}\\ \ccc{CopyConstructible}\\ \ccc{DefaultConstructible}\\ \ccTypes \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccCreationVariable{fo} \ccTypedef{typedef int result_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d argument_type;}{} \ccOperations \ccMethod{result_type operator()(argument_type p);} {Computes the degree of $p$ with respect to the outermost variable $x_{d-1}$.} \ccMethod{result_type operator()(argument_type p, int i);} {Computes the degree of $p$ with respect to variable $x_i$. \ccPrecond $0 \leq i < d$ } %\ccHasModels \ccSeeAlso \ccRefIdfierPage{Polynomial_d}\\ \ccRefIdfierPage{PolynomialTraits_d}\\ \ccRefIdfierPage{PolynomialTraits_d::TotalDegree}\\ \ccRefIdfierPage{PolynomialTraits_d::DegreeVector} \end{ccRefConcept}