\begin{ccRefConcept}{PolynomialTraits_d::IsZeroAtHomogeneous} \ccDefinition This \ccc{AdaptableFunctor} returns whether a \ccc{PolynomialTraits_d::Polynomial_d} $p$ is zero at a given homogeneous point, which is given by an iterator range. The polynomial is interpreted as a homogeneous polynomial in all variables. \\ For instance the polynomial $p(x_0,x_1) = x_0^2x_1^3+x_1^4$ is interpreted as the homogeneous polynomial $p(x_0,x_1,w) = x_0^2x_1^3+x_1^4w^1$. \ccRefines \ccc{AdaptableFunctor}\\ \ccc{CopyConstructible}\\ \ccc{DefaultConstructible}\\ \ccTypes \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccCreationVariable{fo} \ccTypedef{typedef bool result_type;}{}\ccGlue \ccOperations \ccMethod{ template result_type operator()(PolynomialTraits_d::Polynomial_d p, InputIterator begin, InputIterator end );}{ Computes whether $p$ is zero at the homogeneous point given by the iterator range, where $begin$ is referring to the innermost variable. \ccPrecond{(end-begin==\ccc{PolynomialTraits_d::d}+1)} \ccPrecond{\ccc{std::iterator_traits< InputIterator >::value_type} is \ccc{ExplicitInteroperable} with \ccc{PolynomialTraits_d::Innermost_coefficient_type}.} } %\ccHasModels \ccSeeAlso \ccRefIdfierPage{Polynomial_d}\\ \ccRefIdfierPage{PolynomialTraits_d}\\ \end{ccRefConcept}