% +------------------------------------------------------------------------+ % | Reference manual page: parameterize.tex % +------------------------------------------------------------------------+ % | 23.09.2005 Laurent Saboret, Pierre Alliez, Bruno Levy % | Package: parameterization % | \RCSdef{\RCSparameterizeRev}{$Id$} \RCSdefDate{\RCSparameterizeDate}{$Date$} % | %%RefPage: end of header, begin of main body % +------------------------------------------------------------------------+ \begin{ccRefFunction}{parameterize} %% add template arg's if necessary %% \ccHtmlCrossLink{} %% add further rules for cross referencing links %% \ccHtmlIndexC[function]{} %% add further index entries \ccDefinition \ccc{parameterize()} is the main entry-point of the Parameterization package. It computes a 1 to 1 mapping from a triangular 3D surface 'mesh' to a piece of the 2D space. The mapping is linear by pieces (linear in each triangle). The result is the (u,v) pair image of each vertex of the 3D surface. 1 to 1 mapping may be guaranteed or not, depending of the algorithm chosen. \ccInclude{CGAL/parameterize.h} % The section below is automatically generated. Do not edit! %START-AUTO(\ccDefinition) \ccFunction{Parameterizer_traits_3::Error_code parameterize (ParameterizationMesh_3 * mesh);} { Compute a 1 to 1 mapping from a triangular 3D surface 'mesh' to 2D circle, using Floater Mean Value Coordinates algorithm. 1 to 1 mapping is guaranteed. The mapping is linear by pieces (linear in each triangle). The result is the (u,v) pair image of each vertex of the 3D surface. Preconditions:\begin{itemize} \item 'mesh' must be a surface with 1 connected component.\item 'mesh' must be a triangular mesh.\end{itemize} } \ccGlue \begin{description} \item[Parameters: ] \begin{description} \item[mesh]3D mesh, model of ParameterizationMesh\_3 concept \end{description} \end{description} \ccGlue \ccFunction{Parameterizer_traits_3::Error_code parameterize (ParameterizationMesh_3 * mesh, ParameterizerTraits_3 parameterizer);} { Compute a 1 to 1 mapping from a triangular 3D surface 'mesh' to a piece of the 2D space. The mapping is linear by pieces (linear in each triangle). The result is the (u,v) pair image of each vertex of the 3D surface. 1 to 1 mapping may be guaranteed or not, depending of ParameterizerTraits\_3 algorithm chosen. Preconditions:\begin{itemize} \item 'mesh' must be a surface with 1 connected component.\item 'mesh' must be a triangular mesh.\item the mesh border must be mapped onto a convex polygon (for fixed border parameterizations).\end{itemize} } \ccGlue \begin{description} \item[Parameters: ] \begin{description} \item[mesh]3D mesh, model of ParameterizationMesh\_3 \item[parameterizer]Parameterization method for 'mesh' \end{description} \end{description} \ccGlue %END-AUTO(\ccDefinition) \ccParameters The full template declaration is: % The section below is automatically generated. Do not edit! %START-AUTO(\ccParameters) %END-AUTO(\ccParameters) \ccSeeAlso \ccRefIdfierPage{CGAL::Barycentric_mapping_parameterizer_3} \\ \ccRefIdfierPage{CGAL::Discrete_authalic_parameterizer_3} \\ \ccRefIdfierPage{CGAL::Discrete_conformal_map_parameterizer_3} \\ \ccRefIdfierPage{CGAL::LSCM_parameterizer_3} \\ \ccRefIdfierPage{CGAL::Mean_value_coordinates_parameterizer_3} \\ \ccExample See \ccc{Simple_parameterization.C} example. \ccImplementation This function simply calls the parameterize() method of the parameterization algorithm chosen. \end{ccRefFunction} % +------------------------------------------------------------------------+ %%RefPage: end of main body, begin of footer % EOF % +------------------------------------------------------------------------+