// Copyright (c) 2017, 2024 GeometryFactory (France) // All rights reserved. // // This file is part of CGAL (www.cgal.org). // // $URL$ // $Id$ // SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial // // Author(s) : Simon Giraudot, Jane Tournois #ifndef CGAL_POISSON_SURFACE_RECONSTRUCTION_H #define CGAL_POISSON_SURFACE_RECONSTRUCTION_H #include #include #include #include #include #include #include #include #include namespace CGAL { /*! \ingroup PkgPoissonSurfaceReconstruction3Ref Performs surface reconstruction as follows: - compute the Poisson implicit function, through a conjugate gradient solver, represented as a piecewise linear function stored on a 3D Delaunay mesh generated via Delaunay refinement - meshes the function with a user-defined precision using another round of Delaunay refinement: it contours the isosurface corresponding to the isovalue of the median of the function values at the input points - outputs the result in a polygon mesh This function relies mainly on the size parameter `spacing`. A reasonable solution is to use the average spacing of the input point set (using `compute_average_spacing()` for example). Smaller values increase the precision of the output mesh at the cost of higher computation time. Parameters `sm_angle`, `sm_radius` and `sm_distance` work similarly to the parameters of `SurfaceMeshFacetsCriteria_3`. The latest two are defined with respect to `spacing`. \tparam PointInputIterator is a model of `InputIterator`. \tparam PointMap is a model of `ReadablePropertyMap` with value type `Point_3`. \tparam NormalMap is a model of `ReadablePropertyMap` with value type `Vector_3`. \tparam PolygonMesh a model of `MutableFaceGraph` with an internal point property map. \tparam Tag is a tag whose type affects the behavior of the meshing algorithm (see `make_surface_mesh()`). \param begin iterator on the first point of the sequence. \param end past the end iterator of the point sequence. \param point_map property map: value_type of `InputIterator` -> Point_3. \param normal_map property map: value_type of `InputIterator` -> Vector_3. \param output_mesh where the reconstruction is stored. \param spacing size parameter. \param sm_angle bound for the minimum facet angle in degrees. \param sm_radius bound for the radius of the surface Delaunay balls (relatively to the `average_spacing`). \param sm_distance bound for the center-center distances (relatively to the `average_spacing`). \param tag surface mesher tag. \return `true` if reconstruction succeeded, `false` otherwise. */ template bool poisson_surface_reconstruction_delaunay (PointInputIterator begin, PointInputIterator end, PointMap point_map, NormalMap normal_map, PolygonMesh& output_mesh, double spacing, double sm_angle = 20.0, double sm_radius = 30.0, double sm_distance = 0.375, Tag tag = Tag()) { typedef typename boost::property_traits::value_type Point; typedef typename Kernel_traits::Kernel Kernel; typedef typename Kernel::Sphere_3 Sphere; typedef typename Kernel::FT FT; typedef CGAL::Poisson_reconstruction_function Poisson_reconstruction_function; typedef CGAL::Poisson_mesh_domain_3 Mesh_domain; typedef typename CGAL::Mesh_triangulation_3::type Tr; typedef CGAL::Mesh_complex_3_in_triangulation_3 C3t3; typedef CGAL::Mesh_criteria_3 Mesh_criteria; Poisson_reconstruction_function function(begin, end, point_map, normal_map); if ( ! function.compute_implicit_function() ) return false; Point inner_point = function.get_inner_point(); Sphere bsphere = function.bounding_sphere(); FT radius = CGAL::approximate_sqrt(bsphere.squared_radius()); FT sm_sphere_radius = 5.0 * radius; FT sm_dichotomy_error = sm_distance * spacing / 1000.0; Mesh_domain domain = Mesh_domain::create_Poisson_mesh_domain(function, Sphere(inner_point, sm_sphere_radius), CGAL::parameters::relative_error_bound(sm_dichotomy_error / sm_sphere_radius)); Mesh_criteria criteria(CGAL::parameters::facet_angle = sm_angle, CGAL::parameters::facet_size = sm_radius*spacing, CGAL::parameters::facet_distance = sm_distance*spacing); auto turn_tag_into_mesh_3_manifold_option = [](Tag) { if constexpr (std::is_same_v) return CGAL::parameters::manifold_with_boundary(); else if constexpr (std::is_same_v) return CGAL::parameters::manifold(); else return CGAL::parameters::non_manifold(); }; C3t3 c3t3 = CGAL::make_mesh_3(domain, criteria, turn_tag_into_mesh_3_manifold_option(tag) .surface_only() .manifold_with_boundary()); const auto& tr = c3t3.triangulation(); if(tr.number_of_vertices() == 0) return false; CGAL::facets_in_complex_3_to_triangle_mesh(c3t3, output_mesh); return true; } } #endif // CGAL_POISSON_SURFACE_RECONSTRUCTION_H