// Copyright (c) 2012 INRIA Sophia-Antipolis (France). // All rights reserved. // // This file is part of CGAL (www.cgal.org). // // $URL$ // $Id$ // SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial // // Author(s): Thijs van Lankveld, Jane Tournois #ifndef CGAL_TRIANGULATION_SEGMENT_TRAVERSER_3_H #define CGAL_TRIANGULATION_SEGMENT_TRAVERSER_3_H #include #include #include #include #include #include #include #include #include #include // If defined, type casting is done statically, // reducing type-safety overhead. #define CGAL_TST_ASSUME_CORRECT_TYPES namespace CGAL { template < class Tr, class Inc > class Triangulation_segment_cell_iterator_3; namespace internal { template < class Tr > struct Incrementer { typedef Incrementer Self; typedef Triangulation_segment_cell_iterator_3 SCI; // describes the type of iterator expected by the incrementer. Incrementer() {} void increment( SCI& sci ) { sci.walk_to_next(); } }; // struct Incrementer } // namespace internal // provides an iterator over the cells intersected by a line segment. /* * The `Triangulation_segment_traverser_3` iterates over the cells * of a `Triangulation_3` by following a straight line segment \f$ st \f$. * * This class is closely related to `Triangulation_3::locate(...)`. * However, unlike this `locate(...)` method, all the cells traversed * by the `Triangulation_segment_traverser_3` intersect the interior of the line * segment \f$ st \f$. * * Traversal starts from a cell containing \f$ s \f$ and it ends in a cell containing * \f$ t \f$. * If \f$ st \f$ is coplanar with a facet or collinear with an edge, at most one of the * incident cells is traversed. * If \f$ st \f$ intersects an edge or vertex, at most two incident cells are traversed: * the cells intersected by \f$ st \f$ strictly in their interior. * * If \f$ s \f$ lies on the convex hull, traversal starts in an incident cell inside * the convex hull. Similarly, if \f$ t \f$ lies on the convex hull, traversal ends in * an adjacent cell inside the convex hull. * * Both \f$ s \f$ and \f$ t \f$ may lie outside the convex hull of the triangulation, * but they must lie within the affine hull of the triangulation. In either case, the * finite facet of any infinite cells traversed must intersect \f$ st \f$. * * The traverser may be applied to any triangulation of dimension > 0. * However, for triangulations of dimension 1, the functionality is somewhat trivial. * * The traverser becomes invalid whenever the triangulation is changed. * * \tparam Tr_ is the triangulation type to traverse. * * \cgalModels{ForwardIterator} * * \sa `Triangulation_3` * \sa `Forward_circulator_base` */ template < class Tr_, class Inc = internal::Incrementer > class Triangulation_segment_cell_iterator_3 { typedef Tr_ Tr; typedef typename Tr::Triangulation_data_structure Tds; typedef typename Tr::Geom_traits Gt; typedef Inc Incrementer; public: // \name Types // \{ typedef Tr Triangulation; //< defines the triangulation type. typedef Triangulation_segment_cell_iterator_3 Segment_cell_iterator; //< defines the segment cell iterator type. typedef typename Tr::Point Point; //< defines the point type. typedef typename Tr::Segment Segment; //< defines the line segment type. typedef typename Tr::Cell Cell; //< defines the type of a cell of the triangulation. typedef typename Tr::Edge Edge; //< defines the type of an edge of the triangulation. typedef typename Tr::Facet Facet; //< defines the type of a facet of the triangulation. typedef typename Tr::Vertex_handle Vertex_handle; //< defines the type of a handle for a vertex in the triangulation. typedef typename Tr::Cell_handle Cell_handle; //< defines the type of a handle for a cell in the triangulation. typedef typename Tr::Locate_type Locate_type; //< defines the simplex type returned from location. struct Simplex //< defines the simplex type { Cell_handle cell = {}; Locate_type lt = Locate_type::OUTSIDE_AFFINE_HULL; int li = -1; int lj = -1; }; typedef Cell value_type; //< defines the value type the iterator refers to. typedef Cell& reference; //< defines the reference type of the iterator. typedef Cell* pointer; //< defines the pointer type of the iterator. typedef std::size_t size_type; //< defines the integral type that can hold the size of a sequence. typedef std::ptrdiff_t difference_type; //< defines the signed integral type that can hold the distance between two iterators. typedef std::forward_iterator_tag iterator_category; //< defines the iterator category. // \} // describes the iterator type when applied to another type of triangulation or incrementer. template < class Tr2, class Inc2 > struct Rebind { typedef Triangulation_segment_cell_iterator_3 Other; }; #if CGAL_DEBUG_TRIANGULATION_SEGMENT_TRAVERSER_3 static auto display_vert(Vertex_handle v) { std::stringstream os; os.precision(17); if(v->time_stamp() == 0) { os << "inf"; } else { os << '#' << v->time_stamp() << "=(" << v->point() << ")"; } return os.str(); }; static auto display_lt(Locate_type lt) { std::stringstream os; switch(lt) { case Locate_type::VERTEX: os << " VERTEX"; break; case Locate_type::EDGE: os << " EDGE"; break; case Locate_type::FACET: os << " FACET"; break; case Locate_type::CELL: os << " CELL"; break; case Locate_type::OUTSIDE_CONVEX_HULL: os << " OUTSIDE_CONVEX_HULL"; break; case Locate_type::OUTSIDE_AFFINE_HULL: os << " OUTSIDE_AFFINE_HULL"; break; } return os.str(); } static auto debug_simplex(Simplex s) { std::stringstream os; os.precision(17); const auto [c, lt, i, j] = s; if(c == Cell_handle{}) { os << "end()"; } else { os << display_vert(c->vertex(0)) << " - " << display_vert(c->vertex(1)) << " - " << display_vert(c->vertex(2)) << " - " << display_vert(c->vertex(3)); os << display_lt(lt) << " " << i << " " << j; } return os.str(); } auto debug_iterator() const { std::stringstream os; os.precision(17); os << " prev: " << debug_simplex(_prev) << "\n cur: " << debug_simplex(_cur); return os.str(); } #endif // CGAL_DEBUG_TRIANGULATION_SEGMENT_TRAVERSER_3 private: typedef Segment_cell_iterator SCI; friend internal::Incrementer; protected: // \internal \name Protected Attributes // \{ // \internal The triangulation to traverse. const Tr* _tr; // \} // The source and target points of the traversal. // These are also stored as vertices for cheaper equality computation. Point _source; Point _target; Vertex_handle _s_vertex; Vertex_handle _t_vertex; // The current cell with its entry point and the previous cell with its // exit point. // Note that the current cell will be Cell_handle() after incrementing past // the first cell containing the target. Simplex _cur, _prev; public: // \name Constructors // \{ // constructs an iterator. /* \param tr the triangulation to iterate though. This triangulation must have dimension > 0. * \param s the source vertex. This vertex must be initialized and cannot be the infinite vertex. * \param t the target vertex. This vertex must be initialized and cannot be the infinite vertex. * It cannot equal `s`. */ Triangulation_segment_cell_iterator_3( const Tr* tr, Vertex_handle s, Vertex_handle t ); // constructs an iterator. /* \param tr the triangulation to iterate though. This triangulation must have dimension > 0. * \param s the source vertex. This vertex must be initialized and cannot be the infinite vertex. * \param t the target point. This point must be initialized and it cannot be be at the same location as `s`. * If `tr` has dimension < 3, `t` must lie inside the affine hull of `tr`. */ Triangulation_segment_cell_iterator_3( const Tr* tr, Vertex_handle s, const Point& t ); // constructs an iterator. /* \param tr the triangulation to iterate though. This triangulation must have dimension > 0. * \param s the source point. This point must be initialized and it cannot be be at the same location as `t`. * \param t the target vertex. This vertex must be initialized and cannot be the infinite vertex. * If `tr` has dimension < 3, `s` must lie inside the affine hull of `tr`. * \param hint the starting point to search for `s`. */ Triangulation_segment_cell_iterator_3( const Tr* tr, const Point& s, Vertex_handle t, Cell_handle hint = Cell_handle() ); // constructs an iterator. /* \param tr the triangulation to iterate though. This triangulation must have dimension > 0. * \param s the source point. This point must be initialized. If `tr` has dimension < 3, `s` must lie inside * the affine hull of `tr`. * \param t the target point. This point must be initialized and it cannot be be at the same location as `s`. * If `tr` has dimension < 3, `t` must lie inside the affine hull of `tr`. * \param hint the starting point to search for `s`. */ Triangulation_segment_cell_iterator_3( const Tr* tr, const Point& s, const Point& t, Cell_handle hint = Cell_handle() ); // constructs an iterator. /* \param tr the triangulation to iterate though. This triangulation must have dimension > 0. * \param S the segment to be traversed. If `tr` has dimension < 3, `S` must lie inside * the affine hull of `tr`. `S` must not be degenerate, i.e. its source and target must not be equal. * \param hint the starting point to search for `S`. */ Triangulation_segment_cell_iterator_3( const Tr* tr, const Segment& S, Cell_handle hint = Cell_handle() ); // \} // private constructor that does not initialize the source and target. // used for the end() Triangulation_segment_cell_iterator_3(const Tr* tr); #ifndef CGAL_TST_ASSUME_CORRECT_TYPES // The virtual destructor is mainly defined to indicate to the casting // operators that this is a dynamic type. virtual #endif ~Triangulation_segment_cell_iterator_3() {} public: // \name Accessors // \{ const Tr* triangulation() const { return _tr; } // gives the source point of the segment followed. /* \return the source point. */ const Point& source() const { return _source; } // gives the target point of the segment followed. /* \return the target point. */ const Point& target() const { return _target; } Vertex_handle target_vertex() const { return _t_vertex; } // gives a handle to the current cell. /* By invariance, this cell is intersected by the segment * between `source()` and `target()`. * \return a handle to the current cell. * \sa `cell()`. */ Cell_handle handle() const { return _cur.cell; } // gives the previous cell. /* This cell is uninitialized until the iterator leaves the initial * cell. * By invariance, once initialized, this cell must be intersected by the segment * between `source()` and `target()`. * \return the previous cell. * \sa `handle()`. */ Cell_handle previous() const { return prev_cell(); } // provides a dereference operator. /* \return a pointer to the current cell. */ Cell* operator->() { return &*(_cur.cell); } // provides an indirection operator. /* \return the current cell. */ Cell& operator*() { return *(_cur.cell); } // provides a conversion operator. /* \return a handle to the current cell. */ operator const Cell_handle&() const { return _cur.cell; } // provides a conversion operator. /* \return the simplex through which the current cell was entered. */ operator Simplex() const { return _cur; } // checks whether the iterator has reached the final cell, which contains the `target()`. /* If the `target()` lies on a facet, edge, or vertex, the final cell is the cell containing * the interior of the segment between `source()` and `target()`. * \return true iff the current cell contains the `target()`. */ bool has_next() const { return this->cell() != Cell_handle(); } // gives the simplex through which the current cell was entered. /* For the first cell, containing the `source()` \f$ s \f$, * this indicates the location of \f$ s \f$ in this cell. */ void entry( Locate_type& lt, int& li, int& lj ) const { lt = this->lt(); li = this->li(); lj = this->lj(); } std::tuple entry() const { return { lt(), li(), lj() }; } // gives the simplex through which the previous cell was exited. /* \pre the current cell is not the initial cell. */ void exit( Locate_type& lt, int& li, int& lj ) const { lt = prev_lt(); li = prev_li(); lj = prev_lj(); } std::tuple exit() const { return { prev_lt(), prev_li(), prev_lj() }; } // gives the past-the-end iterator associated with this iterator. SCI end() const; // \} public: // \name Mutators // \{ // provides the increment postfix operator. /* After incrementing the iterator, the current cell intersects the segment * between `source()` and `target()` closer to the `target()` than the previous cell. * \sa `operator++(int)`. * \pre The current cell does not contain the `target()`. */ SCI& operator++(); // provides the increment prefix operator. /* After incrementing the iterator, the current cell intersects the segment * between `source()` and `target()` closer to the `target()` than the previous cell. * than the previous cell. * \sa `operator++()`. * \pre The current cell does not contain the `target()`. */ SCI operator++( int ); // iterates to the final cell, which contains the `target()`. /* \return the final cell. */ Cell_handle complete(); // \} public: // \name Comparison // \{ // compares this iterator with `sci`. /* \param sci the other iterator. * \return true iff the other iterator iterates the same triangulation along the same line segment * and has the same current cell. * \sa `operator!=( const SCI& t )`. */ bool operator==( const SCI& sci ) const; // compares this iterator with `sci`. /* \param sci the other iterator. * \return `false` iff the other iterator iterates the same triangulation along the same line segment * and has the same current cell. * \sa `operator==( const SCI& t ) const`. */ bool operator!=( const SCI& sci ) const; // compares the current cell with `ch`. /* \param ch a handle to the other cell. * \return true iff the current cell is the same as the one pointed to by `ch`. * \sa `operator!=( const Cell_handle& ch ) const`. * \sa `operator==( typename TriangulationTraits_3::Cell_handle ch, Triangulation_segment_cell_iterator_3 t )`. */ bool operator==( const Cell_handle& ch ) const { return ch == _cur.cell; } // compares the current cell with `ch`. /* \param ch a handle to the other cell. * \return `false` iff the current cell is the same as the one pointed to by `ch`. * \sa `operator==( const Cell_handle& ch )`. * \sa `operator!=( typename TriangulationTraits_3::Cell_handle ch, Triangulation_segment_cell_iterator_3 t )`. */ bool operator!=( const Cell_handle& ch ) const { return ch != _cur.cell; } // \} bool operator==( Nullptr_t CGAL_assertion_code(n) ) const; bool operator!=( Nullptr_t n ) const; protected: // \internal \name Protected Member Functions // \{ // walks to the next cell. /* \sa `complete()`. */ void walk_to_next(); // increments the iterator. /* This method may perform more actions based on the superclass. * \sa `complete()`. */ void increment() { typedef typename Incrementer::SCI Expected; #ifdef CGAL_TST_ASSUME_CORRECT_TYPES Expected& sci = static_cast( *this ); #else // CGAL_TST_ASSUME_CORRECT_TYPES Expected& sci = dynamic_cast( *this ); #endif // CGAL_TST_ASSUME_CORRECT_TYPES Incrementer().increment( sci ); } // \} private: // at the end of the constructors, entry() is a vertex, edge or facet, // we need to circulate/iterate over its incident cells to // make sure that the current cell intersects the input query void jump_to_intersecting_cell(); // walk_to_next(), if the triangulation is 3D. std::pair walk_to_next_3(const Simplex& prev, const Simplex& cur) const; void walk_to_next_3_inf( int inf ); // walk_to_next(), if the triangulation is 2D. void walk_to_next_2(); void walk_to_next_2_inf( int inf ); private: inline int edgeIndex( int i, int j ) const { CGAL_precondition( i>=0 && i<=3 ); CGAL_precondition( j>=0 && j<=3 ); CGAL_precondition( i != j ); return ( i==0 || j==0 ) ? i+j-1 : i+j; } bool have_same_entry(const Simplex& s1, const Simplex& s2) const; // Compute the orientation of a point compared to the oriented plane supporting a half-facet. CGAL::Orientation orientation(const Facet& f, const Point& p) const; bool coplanar(const Facet &f, const Point &p) const; // Gives the edge incident to the same cell that is not incident to any of the input vertices. Edge opposite_edge(Cell_handle c, int li, int lj) const; Edge opposite_edge(const Edge& e) const; protected: // ref-accessors to the simplex, for use in internal code // access _cur Cell_handle& cell() { return _cur.cell; } Cell_handle const& cell() const { return _cur.cell; } Locate_type& lt() { return _cur.lt; } Locate_type const& lt() const { return _cur.lt; } int& li() { return _cur.li; } int const& li() const { return _cur.li; } int& lj() { return _cur.lj; } int const& lj() const { return _cur.lj; } // access _prev Cell_handle& prev_cell() { return _prev.cell; } Cell_handle const& prev_cell() const { return _prev.cell; } Locate_type& prev_lt() { return _prev.lt; } Locate_type const& prev_lt() const { return _prev.lt; } int& prev_li() { return _prev.li; } int const& prev_li() const { return _prev.li; } int& prev_lj() { return _prev.lj; } int const& prev_lj() const { return _prev.lj; } }; // class Triangulation_segment_cell_iterator_3 // compares a handle to a cell to a traverser. /* \param ch the handle to a cell. * \param t the traverser. * \return true iff the cell currently traversed by `t` is the same as the one pointed to by `ch`. * \sa `operator!=( typename TriangulationTraits_3::Cell_handle ch, Triangulation_segment_cell_iterator_3 t )`. * \sa `Triangulation_segment_cell_iterator_3::operator==( const Cell_handle& ch )`. */ template < class Tr, class Inc > inline bool operator==( typename Tr::Cell_handle ch, Triangulation_segment_cell_iterator_3 tci ) { return tci == ch; } // compares a handle to a cell to a traverser. /* \param ch the handle to a cell. * \param t the traverser. * \return `false` iff the cell currently traversed by `t` is the same as the one pointed to by `ch`. * \sa `operator==( typename TriangulationTraits_3::Cell_handle ch, Triangulation_segment_cell_iterator_3 t )`. * \sa `Triangulation_segment_cell_iterator_3::operator!=( const Cell_handle& ch )`. */ template < class Tr, class Inc > inline bool operator!=( typename Tr::Cell_handle ch, Triangulation_segment_cell_iterator_3 tci ) { return tci != ch; } /********************************************************************/ /********************************************************************/ /********************************************************************/ template < class Tr_, class Inc = internal::Incrementer > class Triangulation_segment_simplex_iterator_3 { typedef Tr_ Tr; typedef typename Tr::Triangulation_data_structure Tds; typedef typename Tr::Geom_traits Gt; typedef Inc Incrementer; private: typedef Triangulation_segment_simplex_iterator_3 Simplex_iterator; typedef Triangulation_segment_cell_iterator_3 SCI; private: typedef typename SCI::Point Point; typedef typename SCI::Segment Segment; public: // \{ typedef typename SCI::Vertex_handle Vertex_handle;//< defines the type of a handle for a vertex in the triangulation typedef typename SCI::Cell_handle Cell_handle; //< defines the type of a handle for a cell in the triangulation. typedef typename SCI::Cell Cell; //< defines the type of a handle for a cell in the triangulation. typedef typename SCI::Triangulation::Edge Edge; //< defines the type of an edge in the triangulation. typedef typename SCI::Triangulation::Facet Facet; //< defines the type of a facet in the triangulation. typedef typename SCI::Locate_type Locate_type; //< defines the simplex type returned from location. typedef CGAL::Triangulation_simplex_3 Simplex_3; typedef Simplex_3 value_type; //< defines the value type the iterator refers to. typedef const Simplex_3& reference; //< defines the reference type of the iterator. typedef const Simplex_3* pointer; //< defines the pointer type of the iterator. typedef std::size_t size_type; //< defines the integral type that can hold the size of a sequence. typedef std::ptrdiff_t difference_type; //< defines the signed integral type that can hold the distance between two iterators. typedef std::forward_iterator_tag iterator_category; //< defines the iterator category. // \} private: SCI _cell_iterator; Simplex_3 _curr_simplex; public: Triangulation_segment_simplex_iterator_3(const Tr* tr , Vertex_handle s, Vertex_handle t) : _cell_iterator(tr, s, t) { set_curr_simplex_to_entry(); } Triangulation_segment_simplex_iterator_3(const Tr* tr , Vertex_handle s, const Point& t) : _cell_iterator(tr, s, t) { set_curr_simplex_to_entry(); } Triangulation_segment_simplex_iterator_3(const Tr* tr , const Point& s, Vertex_handle t, Cell_handle hint = Cell_handle()) : _cell_iterator(tr, s, t, hint) { set_curr_simplex_to_entry(); } Triangulation_segment_simplex_iterator_3(const Tr* tr , const Point& s, const Point& t, Cell_handle hint = Cell_handle()) : _cell_iterator(tr, s, t, hint) { set_curr_simplex_to_entry(); } Triangulation_segment_simplex_iterator_3(const Tr* tr , const Segment& seg, Cell_handle hint = Cell_handle()) : _cell_iterator(tr, seg, hint) { set_curr_simplex_to_entry(); } Triangulation_segment_simplex_iterator_3(const Tr* tr) : _cell_iterator(tr) , _curr_simplex() {} bool operator==(const Simplex_iterator& sit) const { return sit._cell_iterator == _cell_iterator && sit._curr_simplex == _curr_simplex; } bool operator!=(const Simplex_iterator& sit) const { return sit._cell_iterator != _cell_iterator || sit._curr_simplex != _curr_simplex; } const Point& source() const { return _cell_iterator.source(); } const Point& target() const { return _cell_iterator.target(); } const Tr& triangulation() const { return *_cell_iterator.triangulation(); } private: Triangulation_segment_simplex_iterator_3 (const SCI& sci) : _cell_iterator(sci) , _curr_simplex() {} private: void set_curr_simplex_to_entry() { #if CGAL_DEBUG_TRIANGULATION_SEGMENT_TRAVERSER_3 std::cerr << "cell iterator is:\n" << _cell_iterator.debug_iterator() << std::endl; #endif // #if CGAL_DEBUG_TRIANGULATION_SEGMENT_TRAVERSER_3 Locate_type lt; int li, lj; Cell_handle cell = Cell_handle(_cell_iterator); //check what is the entry type of _cell_iterator if (cell == Cell_handle()) { //where did the segment get out from previous cell cell = _cell_iterator.previous(); _cell_iterator.exit(lt, li, lj); } else { _cell_iterator.entry(lt, li, lj); } switch (lt) { case Locate_type::VERTEX: _curr_simplex = cell->vertex(li); break; case Locate_type::EDGE: _curr_simplex = Edge(cell, li, lj); break; case Locate_type::FACET: _curr_simplex = Facet(cell, li); break; //the 3 cases below correspond to the case when _cell_iterator //is in its initial position: _cur is locate(source) case Locate_type::CELL: case Locate_type::OUTSIDE_CONVEX_HULL: case Locate_type::OUTSIDE_AFFINE_HULL: if (Cell_handle(_cell_iterator) == Cell_handle()) _curr_simplex = Simplex_3(); else _curr_simplex = cell; break; default: CGAL_unreachable(); }; } public: Simplex_iterator end() const { Simplex_iterator sit(_cell_iterator.end()); return sit; } // provides the increment postfix operator. Simplex_iterator& operator++() { auto increment_cell_iterator = [&]() { ++_cell_iterator; #if CGAL_DEBUG_TRIANGULATION_SEGMENT_TRAVERSER_3 std::cerr << "increment cell iterator to:\n" << _cell_iterator.debug_iterator() << '\n'; #endif }; CGAL_assertion(_curr_simplex.incident_cell() != Cell_handle()); if(!cell_iterator_is_ahead()) { increment_cell_iterator(); // cell_iterator needs to be ahead } Cell_handle ch_next = Cell_handle(_cell_iterator); Cell_handle ch_prev = _cell_iterator.previous(); Locate_type lt_prev; int li_prev, lj_prev; _cell_iterator.exit(lt_prev, li_prev, lj_prev); if(_curr_simplex.dimension() == 3) { set_curr_simplex_to_entry(); return *this; } if(lt_prev == Locate_type::CELL || lt_prev == Locate_type::OUTSIDE_CONVEX_HULL || lt_prev == Locate_type::OUTSIDE_AFFINE_HULL) { CGAL_assertion(ch_next == Cell_handle()); _curr_simplex = ch_prev; return *this; } switch(_curr_simplex.dimension()) { case 2: { /*Facet*/ CGAL_assertion((ch_next == Cell_handle()) == (_cell_iterator == _cell_iterator.end())); switch(lt_prev) { case Locate_type::VERTEX: { // facet-cell?-vertex-outside Vertex_handle v_prev{ch_prev->vertex(li_prev)}; if(facet_has_vertex(get_facet(), v_prev)) _curr_simplex = v_prev; else _curr_simplex = ch_prev; } break; case Locate_type::EDGE: { // facet-cell?-edge-outside Edge edge_prev{ch_prev, li_prev, lj_prev}; if(facet_has_edge(get_facet(), edge_prev)) _curr_simplex = edge_prev; else _curr_simplex = ch_prev; } break; case Locate_type::FACET: { // facet-cell-facet-outside Facet f_prev{ch_prev, li_prev}; if(is_same_facet(f_prev, get_facet())) { if(ch_next == Cell_handle()) _curr_simplex = Simplex_3(); else _curr_simplex = ch_next; } else _curr_simplex = ch_prev; } break; default: CGAL_unreachable(); } } break; case 1: {/*Edge*/ switch(lt_prev) { case Locate_type::VERTEX: { //edge-vertex-outside Vertex_handle v_prev{ch_prev->vertex(li_prev)}; if(edge_has_vertex(get_edge(), v_prev)) _curr_simplex = v_prev; else _curr_simplex = shared_facet(get_edge(), v_prev); } break; case Locate_type::EDGE: { //edge-outside or edge-cell-edge-outside const Edge e_prev(ch_prev, li_prev, lj_prev); if(is_same_edge(get_edge(), e_prev)) { if(ch_next == Cell_handle()) { _curr_simplex = Simplex_3(); } else { _curr_simplex = ch_next; } } else { auto facet_opt = shared_facet(get_edge(), e_prev); if(facet_opt.has_value()) { _curr_simplex = facet_opt.value(); } else { _curr_simplex = shared_cell(get_edge(), e_prev); } } } break; case Locate_type::FACET: { Facet f_prev{ch_prev, li_prev}; if(facet_has_edge(f_prev, get_edge())) _curr_simplex = f_prev; //edge-facet-outside else _curr_simplex = ch_prev; //query goes through the cell } break; default: CGAL_unreachable(); } } break; case 0 :/*Vertex_handle*/ { switch(lt_prev) { case Locate_type::VERTEX: { if(ch_prev->vertex(li_prev) != get_vertex()) // avoid infinite loop edge-vertex-same edge-... _curr_simplex = Edge(ch_prev, li_prev, ch_prev->index(get_vertex())); else { if(ch_next == Cell_handle()) { _curr_simplex = Simplex_3(); } else { _curr_simplex = ch_next; } } } break; case Locate_type::EDGE: { const Edge e_prev(ch_prev, li_prev, lj_prev); if(edge_has_vertex(e_prev, get_vertex())) _curr_simplex = e_prev; else _curr_simplex = shared_facet(Edge(ch_prev, li_prev, lj_prev), get_vertex()); } break; case Locate_type::FACET: { if(ch_prev->vertex(li_prev) != get_vertex()) // vertex-facet-outside _curr_simplex = Facet(ch_prev, li_prev); else // vertex-cell-facet-outside _curr_simplex = ch_prev; } break; default: CGAL_unreachable(); } } break; default: CGAL_unreachable(); }; return *this; } // provides the increment prefix operator. Simplex_iterator operator++(int) { Simplex_iterator tmp(*this); ++(*this); return tmp; } // provides a dereference operator. /* \return a pointer to the current cell. */ const Simplex_3* operator->() { return &_curr_simplex; } // provides an indirection operator. /* \return the current cell. */ const Simplex_3& operator*() { return _curr_simplex; } // provides a conversion operator. /* \return the current simplex */ operator const Simplex_3() const { return _curr_simplex; } bool is_vertex() const { return _curr_simplex.dimension() == 0; } bool is_edge() const { return _curr_simplex.dimension() == 1; } bool is_facet() const { return _curr_simplex.dimension() == 2; } bool is_cell() const { return _curr_simplex.dimension() == 3; } const Cell cell() const { return _cell_iterator.cell(); } const Simplex_3& get_simplex() const { return _curr_simplex; } Vertex_handle get_vertex() const { CGAL_assertion(is_vertex()); return Vertex_handle(_curr_simplex); } Edge get_edge() const { CGAL_assertion(is_edge()); return Edge(_curr_simplex); } Facet get_facet() const { CGAL_assertion(is_facet()); return Facet(_curr_simplex); } Cell_handle get_cell() const { CGAL_assertion(is_cell()); return Cell_handle(_curr_simplex); } public: //returns true in any of the degenerate cases, //i.e. when _curr_simplex has the following values successively // edge / facet / edge // edge / facet / vertex // vertex / facet / edge // vertex / edge / vertex // TODO : rename this function bool is_collinear() const { int curr_dim = _curr_simplex.dimension(); //this concerns only edges and facets if (curr_dim == 1 || curr_dim == 2) return cell_iterator_is_ahead(); //the degeneracy has been detected by moving cell_iterator forward else return false; } int simplex_dimension() const { return _curr_simplex.dimension(); } private: bool cell_iterator_is_ahead() const { Cell_handle ch = Cell_handle(_cell_iterator); if(ch == Cell_handle()) return true; switch (_curr_simplex.dimension()) { case 0 ://vertex return !ch->has_vertex(get_vertex()); case 1 ://edge return !cell_has_edge(ch, get_edge()); case 2 ://facet return !cell_has_facet(ch, get_facet()); case 3 ://cell return ch != get_cell(); default: CGAL_unreachable(); } //should not be reached CGAL_unreachable(); return false; } bool cell_has_edge(const Cell_handle ch, const Edge& e) const { Vertex_handle v1 = e.first->vertex(e.second); Vertex_handle v2 = e.first->vertex(e.third); return ch->has_vertex(v1) && ch->has_vertex(v2); } bool cell_has_facet(const Cell_handle c, const Facet& f) const { return f.first == c || f.first->neighbor(f.second) == c; } bool facet_has_edge(const Facet& f, const Edge& e) const { Vertex_handle v1 = e.first->vertex(e.second); Vertex_handle v2 = e.first->vertex(e.third); Cell_handle c = f.first; const int fi = f.second; unsigned int count = 0; for (int i = 1; i < 4; ++i) { Vertex_handle vi = c->vertex((fi + i) % 4); if (vi == v1 || vi == v2) ++count; if (count == 2) return true; } return false; } bool facet_has_vertex(const Facet& f, const Vertex_handle v) const { return triangulation().tds().has_vertex(f, v); } bool edge_has_vertex(const Edge& e, const Vertex_handle v) const { return e.first->vertex(e.second) == v || e.first->vertex(e.third) == v; } bool is_same_edge(const Edge& e1, const Edge& e2) const { return edge_has_vertex(e1, e2.first->vertex(e2.second)) && edge_has_vertex(e1, e2.first->vertex(e2.third)); } bool is_same_facet(const Facet& f1, const Facet& f2) const { return f1 == f2 || triangulation().mirror_facet(f1) == f2; } std::optional shared_vertex(const Edge& e1, const Edge& e2) const { Vertex_handle v1a = e1.first->vertex(e1.second); Vertex_handle v1b = e1.first->vertex(e1.third); Vertex_handle v2a = e2.first->vertex(e2.second); Vertex_handle v2b = e2.first->vertex(e2.third); if (v1a == v2a || v1a == v2b) return v1a; else if (v1b == v2a || v1b == v2b) return v1b; else return {}; } std::optional shared_facet(const Edge& e1, const Edge& e2) const { Vertex_handle v2a = e2.first->vertex(e2.second); Vertex_handle v2b = e2.first->vertex(e2.third); auto sv_opt = shared_vertex(e1, e2); if(!sv_opt.has_value()) return {}; Vertex_handle sv = sv_opt.value(); Vertex_handle nsv2 = (sv == v2a) ? v2b : v2a; typename Tr::Facet_circulator circ = triangulation().incident_facets(e1); typename Tr::Facet_circulator end = circ; do { Facet f = *circ; for (int i = 1; i < 4; ++i) { if (nsv2 == f.first->vertex((f.second + i) % 4)) return f; } } while (++circ != end); return {}; } Facet shared_facet(const Edge& e, const Vertex_handle v) const { typename Tr::Facet_circulator circ = triangulation().incident_facets(e); typename Tr::Facet_circulator end = circ; do { Facet f = *circ; if (facet_has_vertex(f, v)) return f; } while (++circ != end); std::cerr << "There is no facet shared by e and v" << std::endl; CGAL_unreachable(); return Facet(Cell_handle(), 0); } Cell_handle shared_cell(const Edge& e, const Vertex_handle v) const { typename Tr::Cell_circulator circ = triangulation().incident_cells(e); typename Tr::Cell_circulator end = circ; do { Cell_handle c = circ; if (c->has_vertex(v)) return c; } while (++circ != end); std::cerr << "There is no cell shared by e and v" << std::endl; CGAL_unreachable(); return Cell_handle(); } Cell_handle shared_cell(const Facet& f, const Vertex_handle v) const { Cell_handle c = f.first; if (c->has_vertex(v)) return c; else { c = f.first->neighbor(f.second); CGAL_assertion(c->has_vertex(v)); return c; } } Cell_handle shared_cell(const Edge e1, const Edge e2) const { Facet facet = shared_facet(e1, e2.first->vertex(e2.second)); return shared_cell(facet, e2.first->vertex(e2.third)); } };//class Triangulation_segment_simplex_iterator_3 } // namespace CGAL #include #endif // CGAL_TRIANGULATION_SEGMENT_TRAVERSER_3_H