// ============================================================================ // // Copyright (c) 2000 The CGAL Consortium // // This software and related documentation is part of an INTERNAL release // of the Computational Geometry Algorithms Library (CGAL). It is not // intended for general use. // // ---------------------------------------------------------------------------- // // release : $CGAL_Revision $ // release_date : $CGAL_Date $ // // file : include/CGAL/Rotation_tree_2.C // package : $CGAL_Package: Partition_2 $ // maintainer : Susan Hert // chapter : Planar Polygon Partitioning // // revision : $Revision$ // revision_date : $Date$ // // author(s) : Susan Hert // // coordinator : MPI (Susan Hert ) // // implementation: Rotation tree for visibility graph computation // ============================================================================ #include #include namespace CGAL { /* template template Rotation_tree_2::Rotation_tree_2(ForwardIterator first, ForwardIterator beyond) { typedef typename Traits::R R; typedef typename Traits::R::FT FT; typedef typename Traits::Less_xy_2 Less_xy_2; typedef ch_Binary_predicate_reversor Greater_xy_2; for (ForwardIterator it = first; it != beyond; it++) push_back(*it); sort(Greater_xy_2(Traits().less_xy_2_object())); unique(); // b is the point with the largest x coordinate Node largest_x = front(); // push the point p_minus_infinity push_front(Point_2( CGAL::to_double(largest_x.x())+1, -CGAL::to_double(largest_x.y()))); // push the point p_infinity push_front(Point_2(CGAL::to_double(largest_x.x())+1, CGAL::to_double(largest_x.y()))); _p_inf = begin(); // record the iterators to these extreme points _p_minus_inf = begin(); _p_minus_inf++; Self_iterator root = begin(); // p_infinity Self_iterator child = root; child++; // now points to p_minus_inf set_rightmost_child(child, root); // make p_minus_inf a child of p_inf root++; // now points to p_minus_inf child++; // now points to p_0 while (child != end()) // make all points children of p_minus_inf { set_rightmost_child(child,root); child++; } } */ // makes *p the rightmost child of *q template void Rotation_tree_2::set_rightmost_child(Self_iterator p, Self_iterator q) { CGAL_assertion(q != end()); if (p != end()) { (*p).clear_right_sibling(); if (rightmost_child(q) != end()) { (*p).set_left_sibling(rightmost_child(q)); (*rightmost_child(q)).set_right_sibling(p); } else (*p).clear_left_sibling(); (*p).set_parent(q); (*q).set_rightmost_child(p); } else { (*q).clear_rightmost_child(); } } // makes *p the left sibling of *q template void Rotation_tree_2::set_left_sibling(Self_iterator p, Self_iterator q) { if (q == end()) return; if (p != end()) { if (left_sibling(q) != end()) { (*left_sibling(q)).set_right_sibling(p); (*p).set_left_sibling(left_sibling(q)); } else (*p).clear_left_sibling(); (*q).set_left_sibling(p); (*p).set_right_sibling(q); set_parent(parent(q),p); } else { if (left_sibling(q) != end()) (*(*q).left_sibling()).clear_right_sibling(); (*q).clear_left_sibling(); } } // makes p the right sibling of q template void Rotation_tree_2::set_right_sibling(Self_iterator p, Self_iterator q) { if (q == end()) return; if (p != end()) { if (right_sibling(q) != end()) { (*right_sibling(q)).set_left_sibling(p); (*p).set_right_sibling(right_sibling(q)); } else (*p).clear_right_sibling(); (*q).set_right_sibling(p); (*p).set_left_sibling(q); set_parent(parent(q),p); } else { if (right_sibling(q) != end()) (*right_sibling(q)).clear_left_sibling(); (*q).clear_right_sibling(); } } // NOTE: this function does not actually remove the node p from the // list; it only reorganizes the pointers so this node is not // in the tree structure anymore template void Rotation_tree_2::erase(Self_iterator p) { CGAL_assertion((*p).is_a_leaf()); Self_iterator s; s = right_sibling(p); if (s != end()) set_left_sibling(left_sibling(p),s); s = left_sibling(p); if (s != end()) set_right_sibling(right_sibling(p),s); s = parent(p); // if p was the rightmost child of its parent, then set its left // sibling as the new rightmost child if (rightmost_child(s) == p) set_rightmost_child(left_sibling(p),s); } template std::ostream& operator<<(std::ostream& os, const Rotation_tree_2& tree) { typename Rotation_tree_2::const_iterator it; for (it = tree.begin(); it != tree.end(); it++) os << *it << " " << std::endl; return os; } }