// ====================================================================== // // Copyright (c) 1999 The CGAL Consortium // // This software and related documentation is part of an INTERNAL release // of the Computational Geometry Algorithms Library (CGAL). It is not // intended for general use. // // ---------------------------------------------------------------------- // // release : $CGAL_Revision: CGAL-2.3-I-75 $ // release_date : $CGAL_Date: 2001/06/21 $ // // file : include/CGAL/LEDA/basic.h // package : cgal_window (1.0.3) // maintainer : Matthias Baesken // revision : 1.0.3 // revision_date : 25 June 2001 // author(s) : Matthias Baesken, Algorithmic Solutions // // coordinator : Matthias Baesken, Trier () // ====================================================================== #ifndef CGAL_WINDOW_BASIC_H #define CGAL_WINDOW_BASIC_H // include system config file #if defined(CGAL_USE_CGAL_HEADERS) #include #else #if !defined(CGAL_CLIB_STD) #if defined(_MSC_VER) #define CGAL_CLIB_STD #else #define CGAL_CLIB_STD std #endif #endif #endif #include // include std header files #include #include #include #include #include #include #include // include basic LEDA headers #include #include namespace CGAL { extern __exportF void leda_wait(double sec); /*{\Mfunc suspends execution for $sec$ seconds.}*/ // maximal and minimal values for some numerical types inline int Max_Value(int& x) { return x = MAXINT; } inline int Min_Value(int& x) { return x = -MAXINT; } inline double Max_Value(double& x) { return x = MAXDOUBLE;} inline double Min_Value(double& x) { return x = -MAXDOUBLE;} extern __exportF double truncate(double x, int k = 10); /*{\Mfunc returns a double whose mantissa is truncated after $k-1$ bits after the binary point, i.e, if $x \not= 0$ then the binary representation of the mantissa of the result has the form d.dddddddd, where the number of d's is equal to $k$. There is a corresponding function for |integers|; it has no effect.}*/ } #endif