// ============================================================================ // // Copyright (c) 1998,1999 The CGAL Consortium // // This software and related documentation is part of an INTERNAL release // of the Computational Geometry Algorithms Library (CGAL). It is not // intended for general use. // // ---------------------------------------------------------------------------- // // release : // release_date : // // file : include/CGAL/Interval_arithmetic.h // revision : $Revision$ // revision_date : $Date$ // package : Interval Arithmetic // author(s) : Sylvain Pion // // coordinator : INRIA Sophia-Antipolis () // // ============================================================================ #ifndef CGAL_INTERVAL_ARITHMETIC_H #define CGAL_INTERVAL_ARITHMETIC_H // This file contains the description of the two classes: // - Interval_nt_advanced (do the FPU rounding mode changes yourself) // - Interval_nt ("plug-in" version, derived from the other one) // // The differences are: // - The second one is slower. // - The first one assumes that the rounding mode is set -> +infinity before // some operations, and might set it -> +infinity when leaving, whereas // the second leaves the rounding -> nearest. // // Note: When rounding is towards +infinity, to make an operation rounded // towards -infinity, it's enough to take the opposite of some of the operand, // and the opposite of the result (see operator+, operator*,...). #include #include // FPU rounding mode functions. #if defined _MSC_VER || defined __CYGWIN__ extern "C" { double CGAL_ms_sqrt(double); } #endif CGAL_BEGIN_NAMESPACE #ifdef CGAL_IA_NO_INLINE struct Interval_nt_advanced; static Interval_nt_advanced operator*(const Interval_nt_advanced&, const Interval_nt_advanced&); static Interval_nt_advanced operator/(const Interval_nt_advanced&, const Interval_nt_advanced&); #endif struct Interval_nt_advanced { typedef Interval_nt_advanced IA; struct unsafe_comparison {}; // Exception class. static unsigned number_of_failures; // Number of filter failures. static const IA Smallest, Largest; // Useful constant intervals. friend inline IA operator+ (const IA &, const IA &); friend inline IA operator- (const IA &, const IA &); #ifdef CGAL_IA_NO_INLINE friend IA operator* (const IA &, const IA &); friend IA operator/ (const IA &, const IA &); #else friend inline IA operator* (const IA &, const IA &); friend inline IA operator/ (const IA &, const IA &); #endif friend inline IA operator|| (const IA &, const IA &); friend inline IA operator&& (const IA &, const IA &); friend inline bool operator< (const IA &, const IA &); friend inline bool operator> (const IA &, const IA &); friend inline bool operator<= (const IA &, const IA &); friend inline bool operator>= (const IA &, const IA &); friend inline bool operator== (const IA &, const IA &); friend inline bool operator!= (const IA &, const IA &); friend inline IA min (const IA &, const IA &); friend inline IA max (const IA &, const IA &); friend inline IA sqrt (const IA &); friend inline IA square (const IA &); friend inline IA abs (const IA &); friend inline double to_double (const IA &); friend inline bool is_valid (const IA &); friend inline bool is_finite (const IA &); friend inline Sign sign (const IA &); friend inline Comparison_result compare (const IA &, const IA &); private: static void overlap_action() // throw (unsafe_comparison) { number_of_failures++; throw unsafe_comparison(); } public: // The constructors. Interval_nt_advanced() {} // To stop constant propagation, I need these CGAL_IA_STOP_CPROP(). // Ideally, these barriers should be placed just before the critical // operations. Interval_nt_advanced(const double d) { _inf = _sup = CGAL_IA_STOP_CPROP(d); } Interval_nt_advanced(const double i, const double s) { #ifndef CGAL_LAZY_EXACT_NT_H CGAL_assertion_msg(i<=s, " CGAL bug or variable used before being initialized"); #endif _inf = CGAL_IA_STOP_CPROP(i); _sup = CGAL_IA_STOP_CPROP(s); } #if 1 // The copy constructors/assignment: useless. // The default ones are ok, but these appear to be faster... Interval_nt_advanced(const IA & d) : _inf(d._inf), _sup(d._sup) {} IA & operator=(const IA & d) { _inf = d._inf; _sup = d._sup; return *this; } #endif IA operator-() const { return IA (-_sup, -_inf); } IA & operator+= (const IA &); IA & operator-= (const IA &); IA & operator*= (const IA &); IA & operator/= (const IA &); bool is_same (const IA & d) const { return _inf == d._inf && _sup == d._sup; } bool is_point() const { return _sup == _inf; } bool overlap (const IA & d) const { return !(d._inf > _sup || d._sup < _inf); } double inf() const { return _inf; } double sup() const { return _sup; } protected: double _inf, _sup; // "_inf" stores the lower bound, "_sup" the upper. }; inline Interval_nt_advanced operator+ (const Interval_nt_advanced & e, const Interval_nt_advanced & d) { CGAL_expensive_assertion(FPU_empiric_test() == CGAL_FE_UPWARD); return Interval_nt_advanced (-CGAL_IA_FORCE_TO_DOUBLE((-e._inf) - d._inf), CGAL_IA_FORCE_TO_DOUBLE( e._sup + d._sup)); } inline Interval_nt_advanced operator- (const Interval_nt_advanced & e, const Interval_nt_advanced & d) { CGAL_expensive_assertion(FPU_empiric_test() == CGAL_FE_UPWARD); return Interval_nt_advanced (-CGAL_IA_FORCE_TO_DOUBLE(d._sup - e._inf), CGAL_IA_FORCE_TO_DOUBLE(e._sup - d._inf)); } #ifdef CGAL_IA_NO_INLINE static #else inline #endif Interval_nt_advanced operator* (const Interval_nt_advanced & e, const Interval_nt_advanced & d) { CGAL_expensive_assertion(FPU_empiric_test() == CGAL_FE_UPWARD); if (e._inf>=0.0) // e>=0 { // d>=0 [_inf*d._inf; _sup*d._sup] // d<=0 [_sup*d._inf; _inf*d._sup] // d~=0 [_sup*d._inf; _sup*d._sup] double a = e._inf, b = e._sup; if (d._inf < 0.0) { a=b; if (d._sup < 0.0) b=e._inf; } return Interval_nt_advanced(-CGAL_IA_FORCE_TO_DOUBLE(a*(-d._inf)), CGAL_IA_FORCE_TO_DOUBLE(b*d._sup)); } else if (e._sup<=0.0) // e<=0 { // d>=0 [_inf*d._sup; _sup*d._inf] // d<=0 [_sup*d._sup; _inf*d._inf] // d~=0 [_inf*d._sup; _inf*d._inf] double a = e._sup, b = e._inf; if (d._inf < 0.0) { a=b; if (d._sup < 0.0) b=e._sup; } return Interval_nt_advanced(-CGAL_IA_FORCE_TO_DOUBLE(b*(-d._sup)), CGAL_IA_FORCE_TO_DOUBLE(a*d._inf)); } else // 0 \in [_inf;_sup] { if (d._inf>=0.0) // d>=0 return Interval_nt_advanced (-CGAL_IA_FORCE_TO_DOUBLE((-e._inf)*d._sup), CGAL_IA_FORCE_TO_DOUBLE(e._sup*d._sup)); if (d._sup<=0.0) // d<=0 return Interval_nt_advanced (-CGAL_IA_FORCE_TO_DOUBLE(e._sup*(-d._inf)), CGAL_IA_FORCE_TO_DOUBLE(e._inf*d._inf)); // 0 \in d double tmp1 = CGAL_IA_FORCE_TO_DOUBLE((-e._inf)*d._sup); double tmp2 = CGAL_IA_FORCE_TO_DOUBLE(e._sup*(-d._inf)); double tmp3 = CGAL_IA_FORCE_TO_DOUBLE(e._inf*d._inf); double tmp4 = CGAL_IA_FORCE_TO_DOUBLE(e._sup*d._sup); return Interval_nt_advanced(-std::max(tmp1,tmp2), std::max(tmp3,tmp4)); }; } #ifdef CGAL_IA_NO_INLINE static #else inline #endif Interval_nt_advanced operator/ (const Interval_nt_advanced & e, const Interval_nt_advanced & d) { CGAL_expensive_assertion(FPU_empiric_test() == CGAL_FE_UPWARD); if (d._inf>0.0) // d>0 { // e>=0 [_inf/d._sup; _sup/d._inf] // e<=0 [_inf/d._inf; _sup/d._sup] // e~=0 [_inf/d._inf; _sup/d._inf] double a = d._sup, b = d._inf; if (e._inf<0.0) { a=b; if (e._sup<0.0) b=d._sup; }; return Interval_nt_advanced(-CGAL_IA_FORCE_TO_DOUBLE((-e._inf)/a), CGAL_IA_FORCE_TO_DOUBLE(e._sup/b)); } else if (d._sup<0.0) // d<0 { // e>=0 [_sup/d._sup; _inf/d._inf] // e<=0 [_sup/d._inf; _inf/d._sup] // e~=0 [_sup/d._sup; _inf/d._sup] double a = d._sup, b = d._inf; if (e._inf<0.0) { b=a; if (e._sup<0.0) a=d._inf; }; return Interval_nt_advanced(-CGAL_IA_FORCE_TO_DOUBLE((-e._sup)/a), CGAL_IA_FORCE_TO_DOUBLE(e._inf/b)); } else // d~0 return Interval_nt_advanced::Largest; // We could do slightly better -> [0;HUGE_VAL] when d._sup==0, // but is this worth ? } inline Interval_nt_advanced sqrt (const Interval_nt_advanced & d) { // sqrt([+a,+b]) => [sqrt(+a);sqrt(+b)] // sqrt([-a,+b]) => [0;sqrt(+b)] => assumes roundoff error. // sqrt([-a,-b]) => [0;sqrt(-b)] => assumes user bug (unspecified result). FPU_set_cw(CGAL_FE_DOWNWARD); #if defined _MSC_VER || defined __CYGWIN__ // sqrt(double) on M$ is buggy. double i = (d._inf>0.0) ? CGAL_IA_FORCE_TO_DOUBLE(CGAL_ms_sqrt(d._inf)) : 0.0; FPU_set_cw(CGAL_FE_UPWARD); return Interval_nt_advanced(i, CGAL_IA_FORCE_TO_DOUBLE(CGAL_ms_sqrt(d._sup))); #else double i = (d._inf>0.0) ? CGAL_IA_FORCE_TO_DOUBLE(std::sqrt(d._inf)) : 0.0; FPU_set_cw(CGAL_FE_UPWARD); return Interval_nt_advanced(i, CGAL_IA_FORCE_TO_DOUBLE(std::sqrt(d._sup))); #endif } inline Interval_nt_advanced square (const Interval_nt_advanced & d) { CGAL_expensive_assertion(FPU_empiric_test() == CGAL_FE_UPWARD); if (d._inf>=0.0) return Interval_nt_advanced(-CGAL_IA_FORCE_TO_DOUBLE(d._inf*(-d._inf)), CGAL_IA_FORCE_TO_DOUBLE(d._sup*d._sup)); if (d._sup<=0.0) return Interval_nt_advanced(-CGAL_IA_FORCE_TO_DOUBLE(d._sup*(-d._sup)), CGAL_IA_FORCE_TO_DOUBLE(d._inf*d._inf)); return Interval_nt_advanced(0.0, CGAL_IA_FORCE_TO_DOUBLE(square(std::max(-d._inf, d._sup)))); } inline bool operator< (const Interval_nt_advanced & e, const Interval_nt_advanced & d) { if (e._sup < d._inf) return true; if (e._inf >= d._sup) return false; Interval_nt_advanced::overlap_action(); return false; } inline bool operator<= (const Interval_nt_advanced & e, const Interval_nt_advanced & d) { if (e._sup <= d._inf) return true; if (e._inf > d._sup) return false; Interval_nt_advanced::overlap_action(); return false; } inline bool operator== (const Interval_nt_advanced & e, const Interval_nt_advanced & d) { if (d._inf > e._sup || d._sup < e._inf) return false; if (d._inf == e._sup && d._sup == e._inf) return true; Interval_nt_advanced::overlap_action(); return false; } inline bool operator> (const Interval_nt_advanced & e, const Interval_nt_advanced & d) { return d < e; } inline bool operator>= (const Interval_nt_advanced & e, const Interval_nt_advanced & d) { return d <= e; } inline bool operator!= (const Interval_nt_advanced & e, const Interval_nt_advanced & d) { return !(d == e); } inline Interval_nt_advanced & Interval_nt_advanced::operator+= (const Interval_nt_advanced & d) { return *this = *this + d; } inline Interval_nt_advanced & Interval_nt_advanced::operator-= (const Interval_nt_advanced & d) { return *this = *this - d; } inline Interval_nt_advanced & Interval_nt_advanced::operator*= (const Interval_nt_advanced & d) { return *this = *this * d; } inline Interval_nt_advanced & Interval_nt_advanced::operator/= (const Interval_nt_advanced & d) { return *this = *this / d; } inline double to_double (const Interval_nt_advanced & d) { return (d._sup + d._inf) * 0.5; } inline bool is_valid (const Interval_nt_advanced & d) { #if defined _MSC_VER || defined __sgi || defined __BORLANDC__ return is_valid(d._inf) && is_valid(d._sup) && d._inf <= d._sup; #else // The 2 first is_valid() are implicitely done by the 3rd test ;-) return d._inf <= d._sup; #endif } inline bool is_finite (const Interval_nt_advanced & d) { return is_finite(d._inf) && is_finite(d._sup); } inline Sign sign (const Interval_nt_advanced & d) { if (d._inf > 0.0) return POSITIVE; if (d._sup < 0.0) return NEGATIVE; if (d._inf == d._sup) return ZERO; Interval_nt_advanced::overlap_action(); return ZERO; } inline Comparison_result compare (const Interval_nt_advanced & d, const Interval_nt_advanced & e) { if (d._inf > e._sup) return LARGER; if (e._inf > d._sup) return SMALLER; if (e._inf == d._sup && d._inf == e._sup) return EQUAL; Interval_nt_advanced::overlap_action(); return EQUAL; } inline Interval_nt_advanced abs (const Interval_nt_advanced & d) { if (d._inf >= 0.0) return d; if (d._sup <= 0.0) return -d; return Interval_nt_advanced(0.0, std::max(-d._inf, d._sup)); } inline Interval_nt_advanced min (const Interval_nt_advanced & d, const Interval_nt_advanced & e) { return Interval_nt_advanced(std::min(d._inf, e._inf), std::min(d._sup, e._sup)); } inline Interval_nt_advanced max (const Interval_nt_advanced & d, const Interval_nt_advanced & e) { return Interval_nt_advanced(std::max(d._inf, e._inf), std::max(d._sup, e._sup)); } // The (join, union, ||) operator. inline Interval_nt_advanced operator|| (const Interval_nt_advanced & d, const Interval_nt_advanced & e) { return Interval_nt_advanced(std::min(e._inf, d._inf), std::max(e._sup, d._sup)); } // The (meet, intersection, &&) operator. Valid if intervals overlap. inline Interval_nt_advanced operator&& (const Interval_nt_advanced & d, const Interval_nt_advanced & e) { return Interval_nt_advanced(std::max(e._inf, d._inf), std::min(e._sup, d._sup)); } // The non-advanced class. struct Interval_nt : public Interval_nt_advanced { typedef Interval_nt IA; // Constructors are identical. Interval_nt() {} Interval_nt(const double d) : Interval_nt_advanced(d) {} Interval_nt(const double a, const double b) : Interval_nt_advanced(a,b) {} // Private constructor for casts. (remade public) Interval_nt(const Interval_nt_advanced &d) : Interval_nt_advanced(d) {} IA operator-() const { return IA(-_sup, -_inf); } IA & operator+=(const IA &); IA & operator-=(const IA &); IA & operator*=(const IA &); IA & operator/=(const IA &); }; inline Interval_nt operator+ (const Interval_nt & e, const Interval_nt & d) { FPU_CW_t backup = FPU_get_and_set_cw(CGAL_FE_UPWARD); Interval_nt tmp ( Interval_nt_advanced(e) + Interval_nt_advanced(d) ); FPU_set_cw(backup); return tmp; } inline Interval_nt operator- (const Interval_nt & e, const Interval_nt & d) { FPU_CW_t backup = FPU_get_and_set_cw(CGAL_FE_UPWARD); Interval_nt tmp ( Interval_nt_advanced(e) - Interval_nt_advanced(d) ); FPU_set_cw(backup); return tmp; } inline Interval_nt operator* (const Interval_nt & e, const Interval_nt & d) { FPU_CW_t backup = FPU_get_and_set_cw(CGAL_FE_UPWARD); Interval_nt tmp ( Interval_nt_advanced(e) * Interval_nt_advanced(d) ); FPU_set_cw(backup); return tmp; } inline Interval_nt operator/ (const Interval_nt & e, const Interval_nt & d) { FPU_CW_t backup = FPU_get_and_set_cw(CGAL_FE_UPWARD); Interval_nt tmp ( Interval_nt_advanced(e) / Interval_nt_advanced(d) ); FPU_set_cw(backup); return tmp; } inline Interval_nt sqrt (const Interval_nt & d) { FPU_CW_t backup = FPU_get_cw(); Interval_nt tmp = sqrt( (Interval_nt_advanced) d); FPU_set_cw(backup); return tmp; } inline Interval_nt square (const Interval_nt & d) { FPU_CW_t backup = FPU_get_and_set_cw(CGAL_FE_UPWARD); Interval_nt tmp = square( (Interval_nt_advanced) d); FPU_set_cw(backup); return tmp; } inline Interval_nt & Interval_nt::operator+= (const Interval_nt & d) { return *this = *this + d; } inline Interval_nt & Interval_nt::operator-= (const Interval_nt & d) { return *this = *this - d; } inline Interval_nt & Interval_nt::operator*= (const Interval_nt & d) { return *this = *this * d; } inline Interval_nt & Interval_nt::operator/= (const Interval_nt & d) { return *this = *this / d; } inline Interval_nt abs (const Interval_nt & d) { return abs( (Interval_nt_advanced) d); } inline Interval_nt min (const Interval_nt & d, const Interval_nt & e) { return min( (Interval_nt_advanced) d, (Interval_nt_advanced) e); } inline Interval_nt max (const Interval_nt & d, const Interval_nt & e) { return max( (Interval_nt_advanced) d, (Interval_nt_advanced) e); } inline Interval_nt operator|| (const Interval_nt & d, const Interval_nt & e) { return ((Interval_nt_advanced) d) || (Interval_nt_advanced) e; } inline Interval_nt operator&& (const Interval_nt & d, const Interval_nt & e) { return ((Interval_nt_advanced) d) && (Interval_nt_advanced) e; } std::ostream & operator<< (std::ostream &, const Interval_nt_advanced &); std::istream & operator>> (std::istream &, Interval_nt_advanced &); // The undocumented tags. inline io_Operator io_tag (const Interval_nt_advanced &) { return io_Operator(); } inline Number_tag number_type_tag (const Interval_nt_advanced &) { return Number_tag(); } CGAL_END_NAMESPACE // Finally we deal with the convert_to(NT). // // For the builtin types (well, all those that can be casted to double // exactly), the template in misc.h is enough. #ifdef CGAL_GMPZ_H #include #endif #ifdef CGAL_BIGFLOAT_H #include #endif #ifdef CGAL_INTEGER_H #include #endif #ifdef CGAL_REAL_H #include #endif #ifdef CGAL_RATIONAL_H #include #endif #ifdef CGAL_FIXED_PRECISION_NT_H #include #endif #ifdef CGAL_QUOTIENT_H #include #endif #endif // CGAL_INTERVAL_ARITHMETIC_H