% +------------------------------------------------------------------------+ % | Reference manual page: SparseLinearAlgebraTraits_d.tex % +------------------------------------------------------------------------+ % | 21.09.2005 Laurent Saboret, Pierre Alliez % | Package: Parameterization % | \RCSdef{\RCSSparseLinearAlgebraTraitsdRev}{$Id$} \RCSdefDate{\RCSSparseLinearAlgebraTraitsdDate}{$Date$} % | %%RefPage: end of header, begin of main body % +------------------------------------------------------------------------+ \begin{ccRefConcept}{SparseLinearAlgebraTraits_d} %% \ccHtmlCrossLink{} %% add further rules for cross referencing links %% \ccHtmlIndexC[concept]{} %% add further index entries \ccDefinition % The section below is automatically generated. Do not edit! %START-AUTO(\ccDefinition) The concept SparseLinearAlgebraTraits\_d is used to solve sparse linear systems {\em A$\ast$X = B}. \begin{description} \item[Todo]Add to SparseLinearAlgebraTraits\_d the ability to solve linear systems in the least squares sense.\end{description} %END-AUTO(\ccDefinition) \ccRefines % The section below is automatically generated. Do not edit! %START-AUTO(\ccRefines) This is a sub-concept of LinearAlgebraTraits\_d. %END-AUTO(\ccRefines) \ccTypes % The section below is automatically generated. Do not edit! %START-AUTO(\ccTypes) \ccNestedType{Matrix} { } \ccGlue \ccNestedType{Vector} { } \ccGlue \ccNestedType{NT} { } \ccGlue %END-AUTO(\ccTypes) \ccCreation \ccCreationVariable{sparse_LA} %% variable name for \ccMethod % The section below is automatically generated. Do not edit! %START-AUTO(\ccCreation) \ccConstructor{SparseLinearAlgebraTraits_d ();} { Default constructor. } \ccGlue %END-AUTO(\ccCreation) \ccOperations % The section below is automatically generated. Do not edit! %START-AUTO(\ccOperations) \ccMethod{bool linear_solver (const Matrix & A, const Vector & B, Vector & X, NT & D);} { Solve the sparse linear system {\em A$\ast$X = B}. Return true on success. The solution is then (1/D) $\ast$ X. Preconditions:\begin{itemize} \item A.row\_dimension() == B.dimension().\item A.column\_dimension() == X.dimension(). \end{itemize} } \ccGlue \ccMethod{bool is_solvable (const Matrix & A, const Vector & B);} { Indicate if the linear system can be solved and if the matrix conditioning is good. Preconditions:\begin{itemize} \item A.row\_dimension() == B.dimension(). \end{itemize} } \ccGlue %END-AUTO(\ccOperations) \ccHasModels \ccRefIdfierPage{CGAL::Taucs_solver_traits} \\ \ccRefIdfierPage{CGAL::Taucs_symmetric_solver_traits} \\ \ccc{OpenNL::DefaultLinearSolverTraits} \\ \ccc{OpenNL::SymmetricLinearSolverTraits} \\ \ccSeeAlso \ccRefIdfierPage{SparseLinearAlgebraTraits_d::Matrix} \\ \ccRefIdfierPage{SparseLinearAlgebraTraits_d::Vector} \\ \end{ccRefConcept} % +------------------------------------------------------------------------+ %%RefPage: end of main body, begin of footer % EOF % +------------------------------------------------------------------------+