% +------------------------------------------------------------------------+ % | Reference manual page: Taucs_symmetric_solver_traits.tex % +------------------------------------------------------------------------+ % | 21.09.2005 Laurent Saboret, Pierre Alliez % | Package: Parameterization % | \RCSdef{\RCSTaucssymmetricsolvertraitsRev}{$Id$} \RCSdefDate{\RCSTaucssymmetricsolvertraitsDate}{$Date$} % | %%RefPage: end of header, begin of main body % +------------------------------------------------------------------------+ \begin{ccRefClass}{Taucs_symmetric_solver_traits} %% add template arg's if necessary %% \ccHtmlCrossLink{} %% add further rules for cross referencing links %% \ccHtmlIndexC[class]{} %% add further index entries \ccDefinition % The section below is automatically generated. Do not edit! %START-AUTO(\ccDefinition) The class Taucs\_symmetric\_solver\_traits is a traits class for solving SYMMETRIC DEFINIE POSITIVE sparse linear systems using TAUCS solvers family. The default solver is the Multifrontal Supernodal Cholesky Factorization. \begin{description} \item[Todo]Add to Taucs\_symmetric\_solver\_traits the ability to solve linear systems in the least squares sense.\end{description} %END-AUTO(\ccDefinition) \ccInclude{CGAL/Taucs_solver_traits.h} \ccIsModel % The section below is automatically generated. Do not edit! %START-AUTO(\ccIsModel) Model of the SparseLinearAlgebraTraits\_d concept. %END-AUTO(\ccIsModel) \ccParameters The full template declaration is: % The section below is automatically generated. Do not edit! %START-AUTO(\ccParameters) template$<$ \\ class T$>$ \\ class Taucs\_symmetric\_solver\_traits; %END-AUTO(\ccParameters) \ccTypes % The section below is automatically generated. Do not edit! %START-AUTO(\ccTypes) \ccNestedType{Matrix} { } \ccGlue \ccNestedType{Vector} { } \ccGlue \ccNestedType{NT} { } \ccGlue %END-AUTO(\ccTypes) \ccCreation \ccCreationVariable{solver} %% choose variable name for \ccMethod % The section below is automatically generated. Do not edit! %START-AUTO(\ccCreation) \ccConstructor{Taucs_symmetric_solver_traits (const char * options[] = NULL, const void * arguments[] = NULL);} { Create a TAUCS sparse linear solver for SYMMETRIC DEFINIE POSITIVE matrices. The default solver is the Multifrontal Supernodal Cholesky Factorization. See taucs\_linsolve() documentation for the meaning of the 'options' and 'arguments' parameters. } \ccGlue \begin{description} \item[Parameters: ] \begin{description} \item[options]must be persistent \item[arguments]must be persistent \end{description} \end{description} \ccGlue %END-AUTO(\ccCreation) \ccOperations % The section below is automatically generated. Do not edit! %START-AUTO(\ccOperations) \ccMethod{bool linear_solver (const Matrix & A, const Vector & B, Vector & X, NT & D);} { Solve the sparse linear system {\em A$\ast$X = B}. Return true on success. The solution is then (1/D) $\ast$ X. Preconditions:\begin{itemize} \item A.row\_dimension() == B.dimension().\item A.column\_dimension() == X.dimension(). \end{itemize} } \ccGlue \ccMethod{bool is_solvable (const Matrix & A, const Vector & B);} { Indicate if the linear system can be solved and if the matrix conditioning is good. Preconditions:\begin{itemize} \item A.row\_dimension() == B.dimension().\end{itemize} } \ccGlue \begin{description} \item[Todo]Implement Taucs\_symmetric\_solver\_traits::is\_solvable() by solving the system, then checking that $|$ $|$$|$A$\ast$X$|$$|$/$|$$|$B$|$$|$ - 1 $|$ $<$ epsilon. \end{description} \ccGlue %END-AUTO(\ccOperations) \ccSeeAlso \ccRefIdfierPage{CGAL::Taucs_solver_traits} \\ \ccRefIdfierPage{CGAL::Taucs_matrix} \\ \ccRefIdfierPage{CGAL::Taucs_symmetric_matrix} \\ \ccRefIdfierPage{CGAL::Taucs_vector} \\ \ccc{OpenNL::DefaultLinearSolverTraits} \\ \ccc{OpenNL::SymmetricLinearSolverTraits} \\ \ccExample Currently, the Parameterization package creates non symmetric square linear systems, thus no example is available. \end{ccRefClass} % +------------------------------------------------------------------------+ %%RefPage: end of main body, begin of footer % EOF % +------------------------------------------------------------------------+