// Copyright (c) 2003-2006 INRIA Sophia-Antipolis (France). // All rights reserved. // // This file is part of CGAL (www.cgal.org); you may redistribute it under // the terms of the Q Public License version 1.0. // See the file LICENSE.QPL distributed with CGAL. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // // // Author(s) : Steve Oudot, David Rey, Mariette Yvinec, Laurent Rineau, Andreas Fabri #ifndef CGAL_COMPLEX_2_IN_TRIANGULATION_3_H #define CGAL_COMPLEX_2_IN_TRIANGULATION_3_H // TODO: add the iterators // TODO: document the output/input function of C2T3? #include #include #include #include #include #include #include namespace CGAL { template < class Tr > class Complex_2_in_triangulation_3 { public: typedef Complex_2_in_triangulation_3 < Tr > Self; typedef Tr Triangulation; typedef typename Triangulation::Vertex_handle Vertex_handle; typedef typename Triangulation::Cell_handle Cell_handle; typedef typename Triangulation::Facet Facet; typedef typename Triangulation::Edge Edge; typedef std::list Facets; typedef std::list Cells; typedef typename Facets::iterator Facet_list_iterator; typedef std::size_t size_type; typedef Const_circulator_from_container Facet_circulator; typedef std::map , std::pair > > Edge_facet_counter; enum Face_status{ NOT_IN_COMPLEX, ISOLATED, BOUNDARY, REGULAR, SINGULAR}; class Iterator_not_in_complex { Self* self; public: Iterator_not_in_complex(Self* self) : self(self) { } template // Facet or Edges iterators bool operator()(Iterator it) const { return ! self->is_in_complex(*it); } }; // end struct Iterator_not_in_complex class Vertex_not_in_complex { Self* self; public: Vertex_not_in_complex(Self* self) : self(self) { } bool operator()(Vertex_handle v) const { // Takes as argument an iterator to a // Vertex, convertible to Vertex_handle. return ! self->is_in_complex(v); } }; // end struct Vertex_not_in_complex class Facet_not_in_complex { Self* self; public: Facet_not_in_complex(Self* self) : self(self) { } bool operator()(Facet f) const { return ! self->is_in_complex(f); } }; // end struct Facet_not_in_complex class Iterator_not_on_boundary { Self* self; public: Iterator_not_on_boundary(Self* self) : self(self) { } template bool operator()(Edge_iterator eit) const { return self->face_status(*eit)!= BOUNDARY; } }; typedef Filter_iterator Facet_iterator; typedef Filter_iterator Edge_iterator; // class to ensure that Vertex_iterator is convertible to Vertex_handle class Vertex_iterator : public Filter_iterator { typedef typename Triangulation::Finite_vertices_iterator Tr_iterator; typedef Filter_iterator Base; typedef typename Base::Predicate Predicate; typedef Vertex_iterator Self; public: Vertex_iterator(Base i) : Base(i) { } Self & operator++() { Base::operator++(); return *this; } Self & operator--() { Base::operator--(); return *this; } Self operator++(int) { Self tmp(*this); ++(*this); return tmp; } Self operator--(int) { Self tmp(*this); --(*this); return tmp; } operator Vertex_handle() { return Vertex_handle(this->base()); } }; typedef Filter_iterator Boundary_edges_iterator; protected: Triangulation& tr; Edge_facet_counter edge_facet_counter; size_type m_number_of_facets; private: // computes and return an ordered pair of Vertex std::pair make_ordered_pair(const Vertex_handle vh1, const Vertex_handle vh2) const { if (vh1 < vh2) { return std::make_pair(vh1, vh2); } else { return std::make_pair(vh2, vh1); } } Facet canonical_facet(Cell_handle c, int i) const { Cell_handle c2 = c->neighbor(i); return (c2 < c) ? std::make_pair(c2,c2->index(c)) : std::make_pair(c,i); } public: // Constructors Complex_2_in_triangulation_3 (Triangulation& t) : tr(t), m_number_of_facets(0) { } void clear() { m_number_of_facets = 0; edge_facet_counter.clear(); } // Access functions Triangulation& triangulation() { return tr; } const Triangulation& triangulation() const { return tr; } Face_status face_status (const Facet& f) const { return face_status (f.first, f.second); } Face_status face_status (const Cell_handle c, const int i) const { return (c->is_facet_on_surface(i)) ? REGULAR : NOT_IN_COMPLEX; } Face_status face_status (const Edge& e) const { return face_status(e.first->vertex(e.second), e.first->vertex(e.third)); } Face_status face_status (const Vertex_handle& va, const Vertex_handle& vb) const { typename Edge_facet_counter::const_iterator it = edge_facet_counter.find(make_ordered_pair(va, vb)); if (it == edge_facet_counter.end()) return NOT_IN_COMPLEX; switch (it->second.first) { case 0 : return ISOLATED; case 1 : return BOUNDARY; case 2 : return REGULAR; default : return SINGULAR; } } // end face_status(const Vertex_handle&, const Vertex_handle&) Face_status face_status (Vertex_handle v) { if(v->is_c2t3_cache_valid() && v->cached_number_of_incident_facets() == 0) return NOT_IN_COMPLEX; //test incident edges for REUGALIRITY and count BOUNDARY edges typename std::vector vertices; vertices.reserve(64); tr.incident_vertices(v, std::back_inserter(vertices)); int number_of_boundary_incident_edges = 0; //COULD BE a Bool for (typename std::vector::iterator vit=vertices.begin(); vit != vertices.end(); vit++ ) { switch( face_status(v, *vit) ) { case NOT_IN_COMPLEX: case REGULAR: break; case BOUNDARY: ++number_of_boundary_incident_edges; break; default : return SINGULAR; } } // from now on incident edges (in complex) are REGULAR or BOUNDARY int i,j; union_find_of_incident_facets(v,i,j); if ( i == 0 ) return NOT_IN_COMPLEX; else if ( j > 1 ) return SINGULAR; else // REGULAR OR BOUNDARY { if (number_of_boundary_incident_edges != 0) return BOUNDARY; else return REGULAR; } } //end of face_status(Vertex_handle) // This function should be called only when incident edges // are known to be REGULAR OR BOUNDARY bool is_regular_or_boundary_for_vertices(Vertex_handle v) { int i,j; union_find_of_incident_facets(v,i,j); return (j == 1); } bool is_in_complex (Vertex_handle v) { int i,j; union_find_of_incident_facets(v,i,j); return ( i != 0); } // extract the subset F of facets of the complex incident to v // set i to the number of facets in F // set j to the number of connected component of the adjacency graph // of F void union_find_of_incident_facets(const Vertex_handle v, int& i, int& j) { if( v->is_c2t3_cache_valid() ) { i = v->cached_number_of_incident_facets(); j = v->cached_number_of_components(); return; } Union_find facets; incident_facets(v, std::back_inserter(facets)); typedef std::map::handle> Vertex_Set_map; typedef typename Vertex_Set_map::iterator Vertex_Set_map_iterator; Vertex_Set_map vsmap; for(typename Union_find::iterator it = facets.begin(); it != facets.end(); ++it){ const Cell_handle& ch = (*it).first; const int& i = (*it).second; for(int j=0; j < 3; ++j){ const Vertex_handle w = ch->vertex(tr.vertex_triple_index(i,j)); if(w != v){ Vertex_Set_map_iterator vsm_it = vsmap.find(w); if(vsm_it != vsmap.end()){ facets.unify_sets(vsm_it->second, it); } else { vsmap.insert(std::make_pair(w, it)); } } } } i = facets.size(); j = facets.number_of_sets(); v->set_c2t3_cache(i, j); return; } bool is_in_complex (const Facet& f) const { return is_in_complex (f.first, f.second); } bool is_in_complex (const Cell_handle c, const int i) const { return face_status(c,i) != NOT_IN_COMPLEX; } bool is_in_complex (const Edge& e) const { return face_status(e) != NOT_IN_COMPLEX; } size_type number_of_facets() const { return m_number_of_facets; } Facet_circulator incident_facets (const Edge& e) { typename Edge_facet_counter::iterator it = edge_facet_counter.find(make_ordered_pair(e.first->vertex(e.second), e.first->vertex(e.third))); if( it == edge_facet_counter.end() ) return Facet_circulator(); else { // position the circulator on the first element of the facets list Facets& lof = it->second.second; return Facet_circulator(&lof); } } /** @TODO: document this class in the SurfaceMeshComplex_2InTriangulation_3 concept. */ template OutputIterator incident_facets(const Vertex_handle v, OutputIterator it) { // TODO: review this function (Laurent Rineau) // We assume that for the generated facets the Cell_handle is smaller than the opposite one tr.incident_facets(v, CGAL::filter_output_iterator(it, Facet_not_in_complex(this))); return it; } // Setting functions void set_in_complex (const Facet& f) { set_in_complex (f.first, f.second); } void set_in_complex (const Cell_handle c, const int i) { change_in_complex_status(c, i); } template void change_in_complex_status(const Cell_handle c, const int i) { // if not already in the complex if ( force_modification || (in_complex ? face_status (c, i) == NOT_IN_COMPLEX : face_status (c, i) != NOT_IN_COMPLEX) ) { if(in_complex) ++m_number_of_facets; else --m_number_of_facets; Facet f = canonical_facet(c, i); c->set_facet_on_surface(i, in_complex); switch( tr.dimension() ) { case 3: { const Cell_handle& c2 = c->neighbor(i); const int& i2 = c2->index(c); c2->set_facet_on_surface(i2, in_complex); } break; case 2: break; default: CGAL_assertion(false); } const int dimension_plus_1 = tr.dimension() + 1; // update c2t3 for edges of f // We consider only pairs made by vertices without i for (int j = 0; j < dimension_plus_1; j++) { for (int k = j + 1; k < dimension_plus_1; k++) { if ( (i != j) && (i != k) ){ const std::pair e = make_ordered_pair(c->vertex(j), c->vertex(k)); if(in_complex) { (edge_facet_counter[e]).first++; (edge_facet_counter[e]).second.push_back(f); // @TODO: beurk. // Recode this! } else { typename Edge_facet_counter::iterator it = edge_facet_counter.find(e); CGAL_assertion( it != edge_facet_counter.end() ); if(--(it->second.first) > 0) it->second.second.remove(f); else edge_facet_counter.erase(it); } } } } // update c2t3 for vertices of f for (int j = 0; j < dimension_plus_1; j++) { if (j != i) c->vertex(j)->invalidate_c2t3_cache(); } } } void remove_from_complex (const Facet& f) { remove_from_complex (f.first, f.second); } void remove_from_complex (const Cell_handle c, const int i) { change_in_complex_status(c, i); } Facet_iterator facets_begin(){ return CGAL::filter_iterator(tr.finite_facets_end(), Iterator_not_in_complex(this), tr.finite_facets_begin()); } Facet_iterator facets_end(){ return CGAL::filter_iterator(tr.finite_facets_end(), Iterator_not_in_complex(this)); } Edge_iterator edges_begin(){ return CGAL::filter_iterator(tr.finite_edges_end(), Iterator_not_in_complex(this), tr.finite_edges_begin()); } Edge_iterator edges_end(){ return CGAL::filter_iterator(tr.finite_edges_end(), Iterator_not_in_complex(this)); } Vertex_iterator vertices_begin(){ return CGAL::filter_iterator(tr.finite_vertices_end(), Vertex_not_in_complex(this), tr.finite_vertices_begin()); } Vertex_iterator vertices_end(){ return CGAL::filter_iterator(tr.finite_vertices_end(), Vertex_not_in_complex(this)); } Boundary_edges_iterator boundary_edges_begin() { return CGAL::filter_iterator(tr.finite_edges_end(), Iterator_not_on_boundary(this), tr.finite_edges_begin()); } Boundary_edges_iterator boundary_edges_end() { return CGAL::filter_iterator(tr.finite_edges_end(), Iterator_not_on_boundary(this)); } #ifdef CGAL_MESH_3_IO_H static std::string io_signature() { return Get_io_signature()(); } #endif }; // end Complex_2_in_triangulation_3 template < class Tr > std::istream & operator>> (std::istream& is, Complex_2_in_triangulation_3& c2t3) { c2t3.clear(); is >> c2t3.triangulation(); // restore datas of c2t3 for(typename Tr::Finite_facets_iterator fit = c2t3.triangulation().finite_facets_begin(); fit != c2t3.triangulation().finite_facets_end(); ++fit) if(fit->first->is_facet_on_surface(fit->second)) c2t3.template change_in_complex_status(fit->first, fit->second); return is; } template < class Tr> std::ostream & operator<< (std::ostream& os, const Complex_2_in_triangulation_3 &c2t3) { return os << c2t3.triangulation(); } } // end namespace CGAL #endif // CGAL_COMPLEX_2_IN_TRIANGULATION_3_H