// Copyright(c) 2023, 2024 Tel-Aviv University (Israel). // All rights reserved. // // This file is part of CGAL (www.cgal.org). // // SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial // // Author(s): Engin Deniz Diktas #include #include #include #include #include #include #include #include #include #include #include "arr_print.h" #include "Geodesic_arcs.h" using Kernel = CGAL::Exact_predicates_exact_constructions_kernel; using Geom_traits = CGAL::Arr_geodesic_arc_on_sphere_traits_2; using Point = Geom_traits::Point_2; using Curve = Geom_traits::Curve_2; using Topol_traits = CGAL::Arr_spherical_topology_traits_2; using Arrangement = CGAL::Arrangement_on_surface_2; using Dir3 = Kernel::Direction_3; std::ostream& operator << (std::ostream& os, const Dir3& d) { os << d.dx() << ", " << d.dy() << ", " << d.dz(); return os; } using Approximate_point_2 = Geom_traits::Approximate_point_2; std::ostream& operator << (std::ostream& os, const Approximate_point_2& d) { os << d.dx() << ", " << d.dy() << ", " << d.dz(); return os; } using Approximate_number_type = Geom_traits::Approximate_number_type; using Approximate_kernel = Geom_traits::Approximate_kernel; using Approximate_Vector_3 = CGAL::Vector_3; using Approximate_Direction_3 = Approximate_kernel::Direction_3; using Direction_3 = Kernel::Direction_3; std::ostream& operator << (std::ostream& os, const Approximate_Vector_3& v) { os << v.x() << ", " << v.y() << ", " << v.z(); //os << v.hx() << ", " << v.hy() << ", " << v.hz() << ", " << v.hw(); return os; } auto Geodesic_arcs::get_approx_arcs(double error) -> Approx_arcs { // Construct the arrangement from 12 geodesic arcs. Geom_traits traits; Arrangement arr(&traits); auto ctr_p = traits.construct_point_2_object(); auto ctr_cv = traits.construct_curve_2_object(); std::vector xcvs; xcvs.push_back(ctr_cv(ctr_p(1, 0, 0), ctr_p(0, 1, 0))); xcvs.push_back(ctr_cv(ctr_p(1, 0, 0), ctr_p(0, 0, 1))); xcvs.push_back(ctr_cv(ctr_p(0, 1, 0), ctr_p(0, 0, 1))); //xcvs.push_back(ctr_cv(ctr_p(1, 0, 0), ctr_p(0, 1, 0), Dir3(0, 0, -1))); //xcvs.push_back(ctr_cv(Dir3(0, 0, -1))); auto approx = traits.approximate_2_object(); std::vector> arcs; for (const auto& xcv : xcvs) { std::vector v; auto oi2 = approx(xcv, error, std::back_insert_iterator(v)); std::vector arc_points; for (const auto& p : v) { const QVector3D arc_point(p.dx(), p.dy(), p.dz()); arc_points.push_back(arc_point); } arcs.push_back(std::move(arc_points)); } //std::cout << "offset count = " << m_arc_offsets.size() << std::endl; return arcs; } auto Geodesic_arcs::get_approx_arcs(const Kml::Placemark& placemark, double error) -> Approx_arcs { Geom_traits traits; auto ctr_p = traits.construct_point_2_object(); auto ctr_cv = traits.construct_curve_2_object(); std::vector xcvs; for (const auto& polygon : placemark.polygons) { // colect all rings into a single list (FOR NOW!!!) // TO-DO: PROCESS OUTER & INNER BOUNDARIES SEPARATELY!!! Kml::LinearRings linear_rings; linear_rings.push_back(polygon.outer_boundary); for (const auto& inner_boundary : polygon.inner_boundaries) linear_rings.push_back(inner_boundary); // convert the nodes to points on unit-sphere for (const auto& lring : linear_rings) { std::vector sphere_points; for (const auto& node : lring.nodes) { const auto p = node.get_coords_3d(); Approximate_Vector_3 v(p.x, p.y, p.z); sphere_points.push_back(v); } // add geodesic arcs for the current LinearRing int num_points = sphere_points.size(); for (int i = 0; i < num_points - 1; ++i) { const auto p1 = sphere_points[i]; const auto p2 = sphere_points[i + 1]; xcvs.push_back(ctr_cv(ctr_p(p1.x(), p1.y(), p1.z()), ctr_p(p2.x(), p2.y(), p2.z()))); } } } auto approx = traits.approximate_2_object(); std::vector> arcs; for (const auto& xcv : xcvs) { std::vector v; auto oi2 = approx(xcv, error, std::back_insert_iterator(v)); std::vector arc_points; for (const auto& p : v) { const QVector3D arc_point(p.dx(), p.dy(), p.dz()); arc_points.push_back(arc_point); } arcs.push_back(std::move(arc_points)); } //std::cout << "offset count = " << m_arc_offsets.size() << std::endl; return arcs; } //Geodesic_arcs::Approx_arcs Geodesic_arcs::get_approx_arcs( // const Kml::Placemarks& placemarks, double error) //{ // Geom_traits traits; // auto ctr_p = traits.construct_point_2_object(); // auto ctr_cv = traits.construct_curve_2_object(); // // std::vector xcvs; // for (const auto& pm : placemarks) // { // for (const auto& lring : pm.polygons) // { // // convert the nodes to points on unit-sphere // std::vector sphere_points; // for (const auto& node : lring.nodes) // { // const auto p = node.get_coords_3d(); // Approximate_Vector_3 v(p.x, p.y, p.z); // sphere_points.push_back(v); // } // // // add curves // int num_points = sphere_points.size(); // for (int i = 0; i < sphere_points.size(); i++) // { // const auto p1 = sphere_points[i]; // const auto p2 = sphere_points[(i+1) % num_points]; // xcvs.push_back(ctr_cv(ctr_p(p1.x(), p1.y(), p1.z()), // ctr_p(p2.x(), p2.y(), p2.z()))); // } // } // } // // auto approx = traits.approximate_2_object(); // std::vector> arcs; // for (const auto& xcv : xcvs) // { // std::vector v; // auto oi2 = approx(xcv, error, std::back_insert_iterator(v)); // // std::vector arc_points; // for (const auto& p : v) // { // const QVector3D arc_point(p.dx(), p.dy(), p.dz()); // arc_points.push_back(arc_point); // } // arcs.push_back(std::move(arc_points)); // } // //std::cout << "offset count = " << m_arc_offsets.size() << std::endl; // // return arcs; //}