// Copyright(c) 2023, 2024 Tel-Aviv University (Israel). // All rights reserved. // // This file is part of CGAL (www.cgal.org). // // SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial // // Author(s): Engin Deniz Diktas #include "Verification.h" #include #include "Kml_reader.h" void Verification::find_minimum_projected_error_on_sphere(float we, Camera& cam, int vp_width, int vp_height) { QRect vp(0, 0, vp_width, vp_height); auto proj = cam.get_projection_matrix(); auto view = cam.get_view_matrix(); QMatrix4x4 model; auto model_view = view * model; float max_err = 0; float max_theta = -1; float max_phi = -1; int num_divs = 200; const float dtheta = M_PI_2 / num_divs; const float dphi = M_PI_2 / num_divs; const float r1 = 1.f; const float r2 = r1 - we; for (int i = 0; i <= num_divs; ++i) { const float theta = dtheta * i; const float cos_theta = std::cos(theta); const float sin_theta = std::sin(theta); for (int j = 0; j <= num_divs; ++j) { QVector3D p1, p2; const float phi = dphi * j; const float cos_phi = std::cos(phi); const float sin_phi = std::sin(phi); // p1 const float r1xz = r1 * sin_phi; p1.setY(r1 * cos_phi); p1.setX(r1xz * cos_theta); p1.setZ(r1xz * sin_theta); // p2 const float r2xz = r2 * sin_phi; p2.setY(r2 * cos_phi); p2.setX(r2xz * cos_theta); p2.setZ(r2xz * sin_theta); auto wp1 = p1.project(model_view, proj, vp); auto wp2 = p2.project(model_view, proj, vp); const auto pe = wp1.distanceToPoint(wp2); if (max_err < pe) { max_err = pe; max_theta = theta; max_phi = phi; } } } std::cout << "max err = " << max_err << std::endl; std::cout << "max phi = " << max_phi * 180 / M_PI << std::endl; std::cout << "max theta = " << max_theta * 180 / M_PI << std::endl; auto wp1 = QVector3D(0, r1, 0).project(model_view, proj, vp); auto wp2 = QVector3D(0, r2, 0).project(model_view, proj, vp); auto pe = wp1.distanceToPoint(wp2); std::cout << "polar err = " << pe << std::endl; wp1 = QVector3D(r1, 0, 0).project(model_view, proj, vp); wp2 = QVector3D(r2, 0, 0).project(model_view, proj, vp); pe = wp1.distanceToPoint(wp2); std::cout << "x-axis err = " << pe << std::endl; wp1 = QVector3D(0, 0, 1).project(model_view, proj, vp); wp2 = QVector3D(we, 0, 1).project(model_view, proj, vp); pe = wp1.distanceToPoint(wp2); std::cout << "nearest proj err = " << pe << std::endl; wp1 = QVector3D(0, 0, -1).project(model_view, proj, vp); wp2 = QVector3D(we, 0, -1).project(model_view, proj, vp); pe = wp1.distanceToPoint(wp2); std::cout << "farthest proj err = " << pe << std::endl; // project the origin on the screen (to check if it projects to the mid-vp) //std::cout << QVector3D(0, 0, 0).project(model_view, proj, vp) << std::endl; } //! \brief void Verification::verify_antarctica_node_is_redundant() { Kml::Node n1(178.277211542064, -84.4725179992025), n2(180.0, -84.71338), n3(-179.942499356179, -84.7214433735525); // 1) check if it is collinear with its neighboring nodes: // all of the vectors in 3D must lie in the same plane auto v1 = n1.get_coords_3f(); auto v2 = n2.get_coords_3f(); auto v3 = n3.get_coords_3f(); auto n = QVector3D::crossProduct(v1, v3); n.normalize(); std::cout << "** DOT PRODUCT = " << QVector3D::dotProduct(n, v2) << std::endl; // 2) check if it is between its neighbors (check if r,s > 0) auto det = [](float ax, float ay, float bx, float by) { return ax * by - ay * bx; }; auto D = det(v1.x(), v1.y(), v3.x(), v3.y()); auto Dr = det(v2.x(), v2.y(), v3.x(), v3.y()); auto Ds = det(v1.x(), v1.y(), v2.x(), v2.y()); auto r = Dr / D; auto s = Ds / D; std::cout << "r = " << r << "\ns=" << s << std::endl; }