\documentclass[a4paper]{article} %\usepackage{html} \usepackage[dvips]{graphics,color,epsfig} \usepackage{path} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \usepackage{amsthm} \usepackage{psfrag} \newcommand{\N}{\ensuremath{\mathbb{N}}} \newcommand{\F}{\ensuremath{\mathbb{F}}} \newcommand{\Z}{\ensuremath{\mathbb{Z}}} \newcommand{\R}{\ensuremath{\mathbb{R}}} \newcommand{\Q}{\ensuremath{\mathbb{Q}}} \newcommand{\C}{\ensuremath{\mathbb{C}}} \newtheorem{lemma}{Lemma} \newtheorem{assumption}{Assumption} \newtheorem{definition}{Definition} \title{Test\_suite\_QP\_solver} \author{Frans Wessendorp} \begin{document} \maketitle \section{Validity check} All of the validity checks of a solution computed by the solver are done using the complete set of constraints; since the solver itself works with an active set method and therefore uses the reduced basis matrix $\check{M}_{B}$ and its inverse we here restate the relationship given in \cite{Frans_Deg}. If the basis heading is given as $\left[C, S_{B}, B_{O}, B_{S} \right]$ the basis matrix $M_{B}$ has the following form \begin{equation} \label{def:basis_matrix} M_{B}:= \left(\begin{array}{c|c|c|c} 0 & 0 & A_{C, B_{O}} & 0 \\ \hline 0 & 0 & A_{S_{B}, B_{O}} & A_{S_{B}, B_{S}} \\ \hline A_{C, B_{O}}^{T} & A_{S_{B}, B_{O}}^{T} & D_{B_{O}, B_{O}} & 0 \\ \hline 0 & A_{S_{B}, B_{S}}^{T} & 0 & 0 \\ \end{array} \right). \end{equation} and the inverse $M_{B}^{-1}$ in terms of the reduced basis inverse $\check{M}_{B}^{-1}$ \begin{equation} \label{eq:M_B_inv_exp} M_{B}^{-1}= \left(\begin{array}{c|c|c|c} \left(\check{M}_{B}^{-1}\right)_{C,C} & 0 & \left(\check{M}_{B}^{-1}\right)_{C,B_{O}} & \left(\check{M}_{B}^{-1}\right)_{C, B_{O}}\alpha^{T} \\ \hline 0 & 0 & 0 & A_{S_{B},B_{S}} \\ \hline \left(\check{M}_{B}^{-1}\right)_{B_{O}, C} & 0 & \left(\check{M}_{B}^{-1}\right)_{B_{O}, B_{O}} & \left(\check{M}_{B}^{-1}\right)_{B_{O},B_{O}}\alpha^{T} \\ \hline \alpha\left(\check{M}_{B}^{-1}\right)_{B_{O}, C} & A_{S_{B}, B_{S}}^{T} & \alpha\left(\check{M}_{B}^{-1}\right)_{B_{O}, B_{O}} & \alpha\left(\check{M}_{B}^{-1}\right)_{B_{O}, B_{O}}\alpha^{T} \end{array} \right) \end{equation} \subsection{Verifying Feasibility} \subsection{Verifying Optimality} \subsection{Verifying Unboundedness} Since the solver delivers, in case of unboundedness, implicitly a feasible solution $x^{*}$ and a vector $w$ such that \begin{equation} \label{eq:Unboundedness} x^{*}-tw \quad \text{for} \quad t>0 \end{equation} is a feasible solution we by convention define the single nonzero nonbasic component of the basic feasible direction $w$ to be negative: \begin{eqnarray} \label{def:w_B} w_{B}&:=&q_{B}=\left(M_{B}^{-1}\right)_{B_{O} \cup B_{S}, \bullet} \left( \begin{array}{c} A_{C,j} \\ \hline A_{S_{B}, j} \\ \hline 2D_{B_{O}, j} \\ \hline 2D_{B_{S}, j} \end{array} \right) \\ \label{def:w_N} w_{N}&:=&-e_{\{j\}} \end{eqnarray} where $j \in N$ and $e_{\{j\}}$ denotes the unit vector with $\left|N\right|$ entries. Feasibility of the solution in Equation~(\ref{eq:Unboundedness}) requires $w <0$ and $Aw=0$. That the latter is true for $w$ defined by Equations~(\ref{def:w_B}) and~(\ref{def:w_N}) shows the following computation where we use the Definitions~(\ref{def:basis_matrix}) and~(\ref{eq:M_B_inv_exp}) \begin{eqnarray} Aw &=& A_{C \cup S_{B}, B_{O} \cup B_{S}} \left(M_{B}^{-1}\right)_{B_{O} \cup B_{S}, \bullet} \left( \begin{array}{c} A_{C,j} \\ \hline A_{S_{B}, j} \\ \hline 2D_{B_{O}, j} \\ \hline 0 \end{array} \right) -A_{C \cup S_{B}, j} \nonumber \\ &=& \left(M_{B}\right)_{C \cup S_{B}, B_{O} \cup B_{S}} \left(M_{B}^{-1}\right)_{B_{O} \cup B_{S}, \bullet} \left( \begin{array}{c} A_{C,j} \\ \hline A_{S_{B}, j} \\ \hline 2D_{B_{O}, j} \\ \hline 0 \end{array} \right) -A_{C \cup S_{B}, j} \nonumber \\ &=& \left(M_{B}\right)_{C \cup S_{B}, \bullet} M_{B}^{-1} \left( \begin{array}{c} A_{C,j} \\ \hline A_{S_{B}, j} \\ \hline 2D_{B_{O}, j} \\ \hline 0 \end{array} \right) -A_{C \cup S_{B}, j} \nonumber \\ &=& \left[ I_{C\cup S_{B},C\cup S_{B}} \left|\right. \mathbf{0}_{C\cup S_{B},B_{O}\cup B_{S}} \right] \left( \begin{array}{c} A_{C,j} \\ \hline A_{S_{B}, j} \\ \hline 2D_{B_{O}, j} \\ \hline 0 \end{array} \right) -A_{C \cup S_{B}, j} \nonumber \\ &=& 0 \end{eqnarray} \subsubsection{Linear Case} We are minimizing the objective function \begin{equation} f\left(x\right):=c^{T}x, \end{equation} so for $t>0$ \begin{eqnarray} f(x^{*}-tw) &=& c^{T}\left(x^{*}-tw\right) \nonumber \\ &=& f\left(x^{*}\right) -tc^{T}w \end{eqnarray} Since we are minimizing we must require $c^{T}w>0$. Subsuming we obtain together with the above the necessary conditions for unboundedness. \begin{enumerate} \item $w_{x_{i}} \leq 0$ for $i \in B_{O} \cup B_{S}$ \item $Aw=0$ \item $c^{T}w>0$ \end{enumerate} \subsubsection{Quadratic Case} We are minimizing the objective function \begin{equation} f\left(x\right):=c^{T}x+x^{T}Dx, \end{equation} using the symmetry of $D$ we obtain for $t>0$ \begin{eqnarray} f(x^{*}-tw) &=& c^{T}\left(x^{*}-tw\right) +\left(x^{*}-tw\right)^{T}D\left(x^{*}-tw\right) \nonumber \\ &=& c^{T}x^{*} - tc^{T}w + {x^{*}}^{T}Dx^{*} - tw^{T}Dx^{*}-t{x^{*}}^{T}Dw +t^{2}w^{T}Dw \nonumber \\ &=& c^{T}x^{*} + {x^{*}}^{T}Dx^{*} + t^{2}w^{T}Dw -t\left[\left(c^{T}+2{x^{*}}^{T}D\right)w\right] \nonumber \\ &=& f\left(x^{*}\right) + t^{2}w^{T}Dw -t\left[\left(c^{T}+2{x^{*}}^{T}D\right)w\right] \end{eqnarray} Since $D$ is positive semidefinite $w^{T}Dw \geq 0$ and since we are minimizing we must require $w^{T}Dw=0$ and $\left(c^{T}+2{x^{*}}^{T}D\right)w>0$. Subsuming we obtain together with the above the necessary conditions for unboundedness. \begin{enumerate} \item $w_{x_{i}} \leq 0$ for $i \in B_{O} \cup B_{S}$ \item $Aw=0$ \item $w^{T}Dw = 0$ \item $\left(c^{T}+2{x^{*}}^{T}D\right)w>0$ \end{enumerate} \begin{thebibliography}{99} \bibitem{Sven} Sven Sch\"{o}nherr. Quadratic Programming in Geometric Optimization: Theory, Implementation, and Applications, Dissertation, Diss. ETH No 14738, ETH Z\"{u}rich, Institute of Theoretical Computer Science, 2002. \bibitem{Chvatal} Va\v{s}ek Chv\'{a}tal. \textit{Linear Programming}. W. H. Freeman and Company, New York, Chapter 8, 1983 \bibitem{Frans_Deg} Degeneracy \end{thebibliography} \end{document}