\begin{ccRefConcept}{PolynomialTraits_d::DegreeVector} \ccDefinition For a given \ccc{PolynomialTraits_d::Polynomial_d} $p$ this \ccc{AdaptableUnaryFunction} returns the degree vector, that is, it returns the exponent vector of the monomial of highest order in $p$, where the monomial order is the lexicographic order giving outer variables a higher priority. In particular, this is the monomial that belongs to the innermost leading coefficient of $p$. \ccRefines \ccc{AdaptableUnaryFunction}\\ \ccc{CopyConstructible}\\ \ccc{DefaultConstructible}\\ \ccTypes \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccCreationVariable{fo} \ccTypedef{typedef Exponent_vector result_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d argument_type;}{} \ccOperations \ccMethod{result_type operator()(argument_type p);} {Returns the degree vector.} %\ccHasModels \ccSeeAlso \ccRefIdfierPage{Polynomial_d}\\ \ccRefIdfierPage{PolynomialTraits_d}\\ \ccRefIdfierPage{PolynomialTraits_d::Degree}\\ \ccRefIdfierPage{PolynomialTraits_d::TotalDegree}\\ \ccRefIdfierPage{PolynomialTraits_d::InnermostLeadingCoefficient}\\ \end{ccRefConcept}