// Copyright (c) 2014 GeometryFactory (France). All rights reserved. // All rights reserved. // // This file is part of CGAL (www.cgal.org); you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public License as // published by the Free Software Foundation; either version 3 of the License, // or (at your option) any later version. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // // Author(s) : Andreas Fabri #ifndef CGAL_BOOST_GRAPH_HELPERS_H #define CGAL_BOOST_GRAPH_HELPERS_H #include #include #include #include #include #include namespace CGAL { namespace Euler { template< typename Graph> void fill_hole(typename boost::graph_traits::halfedge_descriptor h, Graph& g); template typename boost::graph_traits::face_descriptor add_face(const VertexRange& vr, Graph& g); }//Euler /*! \ingroup PkgBGLHelperFct returns `true` if the halfedge `hd` is on a border. */ template bool is_border(typename boost::graph_traits::halfedge_descriptor hd, const FaceGraph& g) { return face(hd,g) == boost::graph_traits::null_face(); } /*! \ingroup PkgBGLHelperFct returns `true` if the halfedge `hd` or the opposite halfedge is on a border. */ template bool is_border_edge(typename boost::graph_traits::halfedge_descriptor hd, const FaceGraph& g) { return is_border(hd, g) || is_border(opposite(hd,g), g); } /*! \ingroup PkgBGLHelperFct returns `true` if the edge `e` is on a border. */ template bool is_border(typename boost::graph_traits::edge_descriptor ed, const FaceGraph& g) { return is_border_edge(halfedge(ed,g), g); } /*! \ingroup PkgBGLHelperFct returns a halfedge which is on a border and whose target vertex is `vd`, if such a halfedge exists. */ template boost::optional::halfedge_descriptor> is_border(typename boost::graph_traits::vertex_descriptor vd, const FaceGraph& g) { CGAL::Halfedge_around_target_iterator havib, havie; for(boost::tie(havib, havie) = halfedges_around_target(halfedge(vd, g), g); havib != havie; ++havib) { if(is_border(*havib,g)) { typename boost::graph_traits::halfedge_descriptor h = *havib; return h; } } // empty return boost::optional::halfedge_descriptor>(); } /*! \ingroup PkgBGLHelperFct returns `true` if there are no border edges. */ template bool is_closed(const FaceGraph& g) { typedef typename boost::graph_traits::halfedge_descriptor halfedge_descriptor; BOOST_FOREACH(halfedge_descriptor hd, halfedges(g)){ if(is_border(hd,g)){ return false; } } return true; } /*! \ingroup PkgBGLHelperFct returns `true` if the target of `hd` has exactly two incident edges. */ template bool is_bivalent(typename boost::graph_traits::halfedge_descriptor hd, const FaceGraph& g) { return hd == opposite(next(opposite(next(hd,g),g),g),g); } /*! \ingroup PkgBGLHelperFct returns `true` if all vertices have exactly two incident edges. */ template bool is_bivalent_mesh(const FaceGraph& g) { typedef typename boost::graph_traits::vertex_descriptor vertex_descriptor; typedef typename boost::graph_traits::halfedge_descriptor halfedge_descriptor; BOOST_FOREACH(vertex_descriptor vd, vertices(g)){ halfedge_descriptor hd = halfedge(vd,g); if((hd == boost::graph_traits::null_halfedge()) || (! is_bivalent(hd,g))){ return false; } } return true; } /*! \ingroup PkgBGLHelperFct returns `true` if the target of `hd` has exactly three incident edges. */ template bool is_trivalent(typename boost::graph_traits::halfedge_descriptor hd, const FaceGraph& g) { return hd == opposite(next(opposite(next(opposite(next(hd,g),g),g),g),g),g); } /*! \ingroup PkgBGLHelperFct returns `true` if all vertices have exactly three incident edges. */ template bool is_trivalent_mesh(const FaceGraph& g) { typedef typename boost::graph_traits::vertex_descriptor vertex_descriptor; typedef typename boost::graph_traits::halfedge_descriptor halfedge_descriptor; BOOST_FOREACH(vertex_descriptor vd, vertices(g)){ halfedge_descriptor hd = halfedge(vd,g); if((hd == boost::graph_traits::null_halfedge()) || (! is_trivalent(halfedge(hd,g),g))){ return false; } } return true; } /*! \ingroup PkgBGLHelperFct returns `true` iff the connected component denoted by `hd` is a triangle. \pre `g` must be valid. */ template bool is_isolated_triangle(typename boost::graph_traits::halfedge_descriptor hd, const FaceGraph& g) { typedef typename boost::graph_traits::halfedge_descriptor halfedge_descriptor; halfedge_descriptor beg = hd; if(is_border(hd,g)) return false; for(int i=0; i<3;i++){ if(! is_border(opposite(hd,g),g)) return false; hd = next(hd,g); } return hd == beg; } /*! \ingroup PkgBGLHelperFct returns `true` iff the face denoted by `hd` is a triangle, that is it has three incident halfedges. */ template bool is_triangle(typename boost::graph_traits::halfedge_descriptor hd, const FaceGraph& g) { return hd == next(next(next(hd,g),g),g); } /*! \ingroup PkgBGLHelperFct returns `true` if all faces are triangles. */ template bool is_triangle_mesh(const FaceGraph& g) { typedef typename boost::graph_traits::face_descriptor face_descriptor; BOOST_FOREACH(face_descriptor fd, faces(g)){ if(! is_triangle(halfedge(fd,g),g)){ return false; } } return true; } /*! \ingroup PkgBGLHelperFct returns `true` iff the connected component denoted by `hd` is a quadrilateral. */ template bool is_isolated_quad(typename boost::graph_traits::halfedge_descriptor hd, const FaceGraph& g) { typedef typename boost::graph_traits::halfedge_descriptor halfedge_descriptor; halfedge_descriptor beg = hd; if(is_border(hd,g)) return false; for(int i=0; i<4;i++){ if(! is_border(opposite(hd,g),g)) return false; hd = next(hd,g); } return hd == beg; } /*! \ingroup PkgBGLHelperFct returns `true` iff the face denoted by `hd` is a quad, that is it has four incident halfedges. */ template bool is_quad(typename boost::graph_traits::halfedge_descriptor hd, const FaceGraph& g) { return hd == next(next(next(next(hd,g),g),g),g); } /*! \ingroup PkgBGLHelperFct returns `true` if all faces are quadrilaterals. */ template bool is_quad_mesh(const FaceGraph& g) { typedef typename boost::graph_traits::face_descriptor face_descriptor; BOOST_FOREACH(face_descriptor fd, faces(g)){ if(! is_quad(halfedge(fd,g),g)){ return false; } } return true; } /*! \ingroup PkgBGLHelperFct returns `true` iff the connected component denoted by `hd` is a tetrahedron. */ template bool is_tetrahedron( typename boost::graph_traits::halfedge_descriptor hd, const FaceGraph& g) { typedef typename boost::graph_traits::halfedge_descriptor halfedge_descriptor; halfedge_descriptor h1 = hd; if(is_border(h1,g)) return false; typedef typename boost::graph_traits::halfedge_descriptor halfedge_descriptor; halfedge_descriptor h2 = next(h1,g); halfedge_descriptor h3 = next(h2,g); halfedge_descriptor h4 = next(opposite(h1,g),g ); halfedge_descriptor h5 = next(opposite(h2,g),g ); halfedge_descriptor h6 = next(opposite(h3,g),g ); // check halfedge combinatorics. // at least three edges at vertices 1, 2, 3. if ( h4 == opposite(h3,g) ) return false; if ( h5 == opposite(h1,g) ) return false; if ( h6 == opposite(h2,g) ) return false; // exact three edges at vertices 1, 2, 3. if ( next(opposite(h4,g),g) != opposite(h3,g) ) return false; if ( next(opposite(h5,g),g) != opposite(h1,g) ) return false; if ( next(opposite(h6,g),g) != opposite(h2,g) ) return false; // three edges at v4. if ( opposite(next(h4,g),g) != h5 ) return false; if ( opposite(next(h5,g),g) != h6 ) return false; if ( opposite(next(h6,g),g) != h4 ) return false; // All facets are triangles. if ( next(next(next(h1,g),g),g) != h1 ) return false; if ( next(next(next(h4,g),g),g) != h4 ) return false; if ( next(next(next(h5,g),g),g) != h5 ) return false; if ( next(next(next(h6,g),g),g) != h6 ) return false; // all edges are non-border edges. if ( is_border(h1,g) ) return false; // implies h2 and h3 if ( is_border(h4,g) ) return false; if ( is_border(h5,g) ) return false; if ( is_border(h6,g) ) return false; return true; } template bool is_valid_halfedge_descriptor( typename boost::graph_traits::halfedge_descriptor h, const FaceGraph& g) { typedef typename boost::graph_traits::halfedge_descriptor halfedge_descriptor; typedef typename boost::graph_traits::face_descriptor face_descriptor; face_descriptor f = face(h,g); halfedge_descriptor done(h); do{ if(face(h,g) != f){ std::cerr << "halfedge " << h << " is invalid\n"; return false; } halfedge_descriptor hn = h; hn = next(h,g); if(prev(hn,g) != h){ std::cerr << "halfedge " << h << " is invalid\n"; return false; } h = hn; } while(h != done); return true; } template bool is_valid_vertex_descriptor( typename boost::graph_traits::vertex_descriptor v, const FaceGraph& g) { typedef typename boost::graph_traits::halfedge_descriptor halfedge_descriptor; halfedge_descriptor h = halfedge(v,g), done(h); if(h == boost::graph_traits::null_halfedge()){ return true; } do{ if(target(h,g) != v){ std::cerr << "vertex " << v << " is invalid\n"; return false; } h = opposite(next(h,g),g); }while(h != done); return true; } template bool is_valid_face_descriptor( typename boost::graph_traits::face_descriptor f, const FaceGraph& g) { typedef typename boost::graph_traits::halfedge_descriptor halfedge_descriptor; halfedge_descriptor h = halfedge(f,g); if(face(h,g) != f){ std::cerr << "face " << f << " is invalid\n"; return false; } return true; } template bool is_valid_polygon_mesh(const FaceGraph& g) { typedef typename boost::graph_traits::halfedge_descriptor halfedge_descriptor; typedef typename boost::graph_traits::vertex_descriptor vertex_descriptor; typedef typename boost::graph_traits::face_descriptor face_descriptor; BOOST_FOREACH(vertex_descriptor v, vertices(g)){ if(! is_valid_vertex_descriptor(v,g)){ return false; } } BOOST_FOREACH(halfedge_descriptor h, halfedges(g)){ if(! is_valid_halfedge_descriptor(h,g)){ return false; } } BOOST_FOREACH(face_descriptor f, faces(g)){ if(! is_valid_face_descriptor(f,g)){ return false; } } return true; } /*! \ingroup PkgBGLHelperFct returns `true` iff the connected component denoted by `hd` is a hexahedron. */ template bool is_hexahedron( typename boost::graph_traits::halfedge_descriptor hd, const FaceGraph& g) { typedef typename boost::graph_traits::halfedge_descriptor halfedge_descriptor; halfedge_descriptor h1 = hd; if(is_border(h1,g)) return false; typedef typename boost::graph_traits::halfedge_descriptor halfedge_descriptor; halfedge_descriptor h2 = next(h1,g); halfedge_descriptor h3 = next(h2,g); halfedge_descriptor h4 = next(h3,g); halfedge_descriptor h1o = opposite(h1,g); halfedge_descriptor h2o = opposite(h2,g); halfedge_descriptor h3o = opposite(h3,g); halfedge_descriptor h4o = opposite(h4,g); if(opposite(next(h2o,g),g) != prev(h1o,g)) return false; if(opposite(next(h3o,g),g) != prev(h2o,g)) return false; if(opposite(next(h4o,g),g) != prev(h3o,g)) return false; if(opposite(next(h1o,g),g) != prev(h4o,g)) return false; if(! is_quad(h1,g)) return false; if(! is_quad(h1o,g)) return false; if(! is_quad(h2o,g)) return false; if(! is_quad(h3o,g)) return false; if(! is_quad(h4o,g)) return false; h1o =next(next(h1o,g),g); h2o =next(next(h2o,g),g); h3o =next(next(h3o,g),g); h4o =next(next(h4o,g),g); if(next(opposite(h2o,g),g) != opposite(h1o,g)) return false; if(next(opposite(h3o,g),g) != opposite(h2o,g)) return false; if(next(opposite(h4o,g),g) != opposite(h3o,g)) return false; if(next(opposite(h1o,g),g) != opposite(h4o,g)) return false; if(! is_quad(opposite(h4o,g),g)) return false; return true; } /** * \ingroup PkgBGLHelperFct * \brief Creates an isolated triangle * with its vertices initialized to `p0`, `p1` and `p2`, and adds it to the graph `g`. * \returns the non-border halfedge that has the target vertex associated with `p0`. **/ template typename boost::graph_traits::halfedge_descriptor make_triangle(const P& p0, const P& p1, const P& p2, Graph& g) { typedef typename boost::graph_traits Traits; typedef typename Traits::halfedge_descriptor halfedge_descriptor; typedef typename Traits::vertex_descriptor vertex_descriptor; typedef typename Traits::face_descriptor face_descriptor; typedef typename boost::property_map::type Point_property_map; Point_property_map ppmap = get(CGAL::vertex_point, g); vertex_descriptor v0, v1, v2; v0 = add_vertex(g); v1 = add_vertex(g); v2 = add_vertex(g); ppmap[v0] = p0; ppmap[v1] = p1; ppmap[v2] = p2; halfedge_descriptor h0 = halfedge(add_edge(g),g); halfedge_descriptor h1 = halfedge(add_edge(g),g); halfedge_descriptor h2 = halfedge(add_edge(g),g); set_next(h0, h1, g); set_next(h1, h2, g); set_next(h2, h0, g); set_target(h0, v1, g); set_target(h1, v2, g); set_target(h2, v0, g); set_halfedge(v1, h0, g); set_halfedge(v2, h1, g); set_halfedge(v0, h2, g); face_descriptor f = add_face(g); set_face(h0,f,g); set_face(h1,f,g); set_face(h2,f,g); set_halfedge(f,h0,g); h0 = opposite(h0,g); h1 = opposite(h1,g); h2 = opposite(h2,g); set_next(h0, h2, g); set_next(h2, h1, g); set_next(h1, h0, g); set_target(h0, v0, g); set_target(h1, v1, g); set_target(h2, v2, g); set_face(h0, boost::graph_traits::null_face(),g); set_face(h1, boost::graph_traits::null_face(),g); set_face(h2, boost::graph_traits::null_face(),g); return opposite(h2,g); } namespace internal { template typename boost::graph_traits::halfedge_descriptor make_quad(typename boost::graph_traits::vertex_descriptor v0, typename boost::graph_traits::vertex_descriptor v1, typename boost::graph_traits::vertex_descriptor v2, typename boost::graph_traits::vertex_descriptor v3, Graph& g) { typedef typename boost::graph_traits::halfedge_descriptor halfedge_descriptor; typedef typename boost::graph_traits::face_descriptor face_descriptor; halfedge_descriptor h0 = halfedge(add_edge(g),g); halfedge_descriptor h1 = halfedge(add_edge(g),g); halfedge_descriptor h2 = halfedge(add_edge(g),g); halfedge_descriptor h3 = halfedge(add_edge(g),g); set_next(h0, h1, g); set_next(h1, h2, g); set_next(h2, h3, g); set_next(h3, h0, g); set_target(h0, v1, g); set_target(h1, v2, g); set_target(h2, v3, g); set_target(h3, v0, g); set_halfedge(v1, h0, g); set_halfedge(v2, h1, g); set_halfedge(v3, h2, g); set_halfedge(v0, h3, g); face_descriptor f = add_face(g); set_face(h0,f,g); set_face(h1,f,g); set_face(h2,f,g); set_face(h3,f,g); set_halfedge(f,h0,g); h0 = opposite(h0,g); h1 = opposite(h1,g); h2 = opposite(h2,g); h3 = opposite(h3,g); set_next(h0, h3, g); set_next(h3, h2, g); set_next(h2, h1, g); set_next(h1, h0, g); set_target(h0, v0, g); set_target(h1, v1, g); set_target(h2, v2, g); set_target(h3, v3, g); set_face(h0, boost::graph_traits::null_face(),g); set_face(h1, boost::graph_traits::null_face(),g); set_face(h2, boost::graph_traits::null_face(),g); set_face(h3, boost::graph_traits::null_face(),g); return opposite(h3,g); } } // namespace internal /** * \ingroup PkgBGLHelperFct * \brief Creates an isolated quad with * its vertices initialized to `p0`, `p1`, `p2`, and `p3`, and adds it to the graph `g`. * \returns the non-border halfedge that has the target vertex associated with `p0`. **/ template typename boost::graph_traits::halfedge_descriptor make_quad(const P& p0, const P& p1, const P& p2, const P& p3, Graph& g) { typedef typename boost::graph_traits Traits; typedef typename Traits::vertex_descriptor vertex_descriptor; typedef typename boost::property_map::type Point_property_map; Point_property_map ppmap = get(CGAL::vertex_point, g); vertex_descriptor v0, v1, v2, v3; v0 = add_vertex(g); v1 = add_vertex(g); v2 = add_vertex(g); v3 = add_vertex(g); ppmap[v0] = p0; ppmap[v1] = p1; ppmap[v2] = p2; ppmap[v3] = p3; return internal::make_quad(v0, v1, v2, v3, g); } /** * \ingroup PkgBGLHelperFct * \brief Creates an isolated hexahedron * with its vertices initialized to `p0`, `p1`, ...\ , and `p7`, and adds it to the graph `g`. * \returns the halfedge that has the target vertex associated with `p0`, in the face with the vertices with the points `p0`, `p1`, `p2`, and `p3`. **/ template typename boost::graph_traits::halfedge_descriptor make_hexahedron(const P& p0, const P& p1, const P& p2, const P& p3, const P& p4, const P& p5, const P& p6, const P& p7, Graph& g) { typedef typename boost::graph_traits Traits; typedef typename Traits::halfedge_descriptor halfedge_descriptor; typedef typename Traits::vertex_descriptor vertex_descriptor; typedef typename boost::property_map::type Point_property_map; Point_property_map ppmap = get(CGAL::vertex_point, g); vertex_descriptor v0, v1, v2, v3, v4, v5, v6, v7; v0 = add_vertex(g); v1 = add_vertex(g); v2 = add_vertex(g); v3 = add_vertex(g); v4 = add_vertex(g); v5 = add_vertex(g); v6 = add_vertex(g); v7 = add_vertex(g); ppmap[v0] = p0; ppmap[v1] = p1; ppmap[v2] = p2; ppmap[v3] = p3; ppmap[v4] = p4; ppmap[v5] = p5; ppmap[v6] = p6; ppmap[v7] = p7; halfedge_descriptor ht = internal::make_quad(v7, v4, v5, v6, g); halfedge_descriptor hb = prev(internal::make_quad(v1, v0, v3, v2, g),g); for(int i=0; i <4; i++){ halfedge_descriptor h = halfedge(add_edge(g),g); set_target(h,target(hb,g),g); set_next(h,opposite(hb,g),g); set_next(opposite(next(ht,g),g),h,g); h = opposite(h,g); set_target(h,target(ht,g),g); set_next(h,opposite(ht,g),g); set_next(opposite(next(hb,g),g),h,g); hb = next(hb,g); ht = prev(ht,g); } for(int i=0; i <4; i++){ Euler::fill_hole(opposite(hb,g),g); hb = next(hb,g); } return next(next(hb,g),g); } /** * \ingroup PkgBGLHelperFct * \brief Creates an isolated tetrahedron * with its vertices initialized to `p0`, `p1`, `p2`, and `p3`, and adds it to the graph `g`. * \returns the halfedge that has the target vertex associated with `p0`, in the face with the vertices with the points `p0`, `p1`, and `p2`. **/ template typename boost::graph_traits::halfedge_descriptor make_tetrahedron(const P& p0, const P& p1, const P& p2, const P& p3, Graph& g) { typedef typename boost::graph_traits Traits; typedef typename Traits::halfedge_descriptor halfedge_descriptor; typedef typename Traits::vertex_descriptor vertex_descriptor; typedef typename Traits::face_descriptor face_descriptor; typedef typename boost::property_map::type Point_property_map; Point_property_map ppmap = get(CGAL::vertex_point, g); vertex_descriptor v0, v1, v2, v3; v0 = add_vertex(g); v2 = add_vertex(g); // this and the next line are switched to keep points in order v1 = add_vertex(g); v3 = add_vertex(g); ppmap[v0] = p0; ppmap[v1] = p2;// this and the next line are switched to reorient the surface ppmap[v2] = p1; ppmap[v3] = p3; halfedge_descriptor h0 = halfedge(add_edge(g),g); halfedge_descriptor h1 = halfedge(add_edge(g),g); halfedge_descriptor h2 = halfedge(add_edge(g),g); set_next(h0, h1, g); set_next(h1, h2, g); set_next(h2, h0, g); set_target(h0, v1, g); set_target(h1, v2, g); set_target(h2, v0, g); set_halfedge(v1, h0, g); set_halfedge(v2, h1, g); set_halfedge(v0, h2, g); face_descriptor f = add_face(g); set_face(h0,f,g); set_face(h1,f,g); set_face(h2,f,g); set_halfedge(f,h0,g); h0 = opposite(h0,g); h1 = opposite(h1,g); h2 = opposite(h2,g); set_next(h0, h2, g); set_next(h2, h1, g); set_next(h1, h0, g); set_target(h0, v0, g); set_target(h1, v1, g); set_target(h2, v2, g); halfedge_descriptor h3 = halfedge(add_edge(g),g); halfedge_descriptor h4 = halfedge(add_edge(g),g); halfedge_descriptor h5 = halfedge(add_edge(g),g); set_target(h3, v3, g); set_target(h4, v3, g); set_target(h5, v3, g); set_halfedge(v3, h3, g); set_next(h0, h3, g); set_next(h1, h4, g); set_next(h2, h5, g); set_next(h3, opposite(h4,g), g); set_next(h4, opposite(h5,g), g); set_next(h5, opposite(h3,g), g); set_next(opposite(h4,g), h0, g); set_next(opposite(h5,g), h1, g); set_next(opposite(h3,g), h2, g); set_target(opposite(h3,g), v0, g); set_target(opposite(h4,g), v1, g); set_target(opposite(h5,g), v2, g); f = add_face(g); set_halfedge(f,h0,g); set_face(h0, f, g); set_face(h3, f, g); set_face(opposite(h4,g), f, g); f = add_face(g); set_halfedge(f,h1,g); set_face(h1, f, g); set_face(h4, f, g); set_face(opposite(h5,g), f, g); f = add_face(g); set_halfedge(f,h2,g); set_face(h2, f, g); set_face(h5, f, g); set_face(opposite(h3,g), f, g); return opposite(h2,g); } /// \cond SKIP_IN_DOC template bool is_degenerate_triangle_face( typename boost::graph_traits::halfedge_descriptor hd, TriangleMesh& tmesh, const VertexPointMap& vpmap, const Traits& traits) { CGAL_assertion(!is_border(hd, tmesh)); const typename Traits::Point_3& p1 = get(vpmap, target( hd, tmesh) ); const typename Traits::Point_3& p2 = get(vpmap, target(next(hd, tmesh), tmesh) ); const typename Traits::Point_3& p3 = get(vpmap, source( hd, tmesh) ); return traits.collinear_3_object()(p1, p2, p3); } template bool is_degenerate_triangle_face( typename boost::graph_traits::face_descriptor fd, TriangleMesh& tmesh, const VertexPointMap& vpmap, const Traits& traits) { return is_degenerate_triangle_face(halfedge(fd,tmesh), tmesh, vpmap, traits); } /// \endcond /** * \ingroup PkgBGLHelperFct * \brief Creates a triangulated regular prism * having `nb_vertices` vertices in each of its bases and adds it to the graph `g`. * If `center` is (0, 0, 0), then the first point of the prism is (`radius`, `height`, 0) * \param nb_vertices the number of vertices per base. It must be greater than or equal to 3. * \param g the graph in which the regular prism will be created. * \param base_center the center of the circle in which the lower base is inscribed. * \param height the distance between the two bases. * \param radius the radius of the circles in which the bases are inscribed. * \param is_closed determines if the bases must be created or not. If `is_closed` is `true`, `center` is a vertex. * \returns the halfedge that has the target vertex associated with the first point in the first face. */ template typename boost::graph_traits::halfedge_descriptor make_regular_prism( typename boost::graph_traits::vertices_size_type nb_vertices, Graph& g, const P& base_center = P(0,0,0), typename CGAL::Kernel_traits

::Kernel::FT height = 1.0, typename CGAL::Kernel_traits

::Kernel::FT radius = 1.0, bool is_closed = true) { CGAL_assertion(nb_vertices >= 3); typedef typename boost::property_map::type Point_property_map; typedef typename boost::graph_traits::vertex_descriptor vertex_descriptor; typedef typename CGAL::Kernel_traits

::Kernel::FT FT; const FT to_rad = CGAL_PI / 180.0; const FT precision = 360.0/nb_vertices; const FT diameter = 2*radius; Point_property_map vpmap = get(CGAL::vertex_point, g); std::vector vertices; vertices.resize(nb_vertices*2); for(typename boost::graph_traits::vertices_size_type i=0; i::vertices_size_type i=0; i < nb_vertices; ++i) { put(vpmap, vertices[i], P(0.5*diameter*cos(i*precision*to_rad)+base_center.x(), height+base_center.y(), -0.5*diameter*sin(i*precision*to_rad) + base_center.z())); put(vpmap, vertices[i+nb_vertices], P(0.5*diameter*cos(i*precision*to_rad)+base_center.x(), base_center.y(), -0.5*diameter*sin(i*precision*to_rad)+base_center.z())); } std::vector face; face.resize(3); //fill faces for(typename boost::graph_traits::vertices_size_type i=0; i::vertices_size_type i=0; i typename boost::graph_traits::halfedge_descriptor make_pyramid( typename boost::graph_traits::vertices_size_type nb_vertices, Graph& g, const P& base_center = P(0,0,0), typename CGAL::Kernel_traits

::Kernel::FT height = 1.0, typename CGAL::Kernel_traits

::Kernel::FT radius = 1.0, bool is_closed = true) { CGAL_assertion(nb_vertices >= 3); typedef typename boost::property_map::type Point_property_map; typedef typename boost::graph_traits::vertex_descriptor vertex_descriptor; typedef typename CGAL::Kernel_traits

::Kernel::FT FT; const FT to_rad = CGAL_PI / 180.0; const FT precision = 360.0/nb_vertices; const FT diameter = 2*radius; Point_property_map vpmap = get(CGAL::vertex_point, g); std::vector vertices; vertices.resize(nb_vertices); for(typename boost::graph_traits::vertices_size_type i=0; i::vertices_size_type i=0; i < nb_vertices; ++i) { put(vpmap, vertices[i], P(0.5*diameter*cos(i*precision*to_rad)+base_center.x(), base_center.y(), -0.5*diameter*sin(i*precision*to_rad)+base_center.z())); } std::vector face; face.resize(3); //fill faces for(typename boost::graph_traits::vertices_size_type i=0; i::vertices_size_type i=0; i typename boost::graph_traits::halfedge_descriptor make_icosahedron( Graph& g, const P& center = P(0,0,0), typename CGAL::Kernel_traits

::Kernel::FT radius = 1.0) { typedef typename boost::property_map::type Point_property_map; typedef typename boost::graph_traits::vertex_descriptor vertex_descriptor; Point_property_map vpmap = get(CGAL::vertex_point, g); // create the initial icosahedron std::vector v_vertices; v_vertices.resize(12); for(int i=0; i<12; ++i) v_vertices[i] = add_vertex(g); typename CGAL::Kernel_traits

::Kernel::FT t = (radius + radius*CGAL::approximate_sqrt(5.0)) / 2.0; put(vpmap, v_vertices[0],P(-radius + center.x(), t + center.y(), 0.0 + center.z())); put(vpmap, v_vertices[1],P( radius + center.x(), t + center.y(), 0.0 + center.z())); put(vpmap, v_vertices[2],P(-radius + center.x(), -t + center.y(), 0.0 + center.z())); put(vpmap, v_vertices[3],P( radius + center.x(), -t + center.y(), 0.0 + center.z())); put(vpmap, v_vertices[4],P( 0.0 + center.x(), -radius + center.y(), t + center.z())); put(vpmap, v_vertices[5],P( 0.0 + center.x(), radius + center.y(), t + center.z())); put(vpmap, v_vertices[6],P( 0.0 + center.x(), -radius + center.y(), -t + center.z())); put(vpmap, v_vertices[7],P( 0.0 + center.x(), radius + center.y(), -t + center.z())); put(vpmap, v_vertices[8],P( t + center.x(), 0.0 + center.y(), -radius + center.z())); put(vpmap, v_vertices[9],P( t + center.x(), 0.0 + center.y(), radius + center.z())); put(vpmap, v_vertices[10],P(-t + center.x(), 0.0 + center.y(), -radius + center.z())); put(vpmap, v_vertices[11],P(-t + center.x(), 0.0 + center.y(), radius + center.z())); std::vector face; face.resize(3); face[1] = v_vertices[0]; face[0] = v_vertices[11]; face[2] = v_vertices[5]; Euler::add_face(face, g); face[1] = v_vertices[0]; face[0] = v_vertices[5]; face[2] = v_vertices[1]; Euler::add_face(face, g); face[1] = v_vertices[0]; face[0] = v_vertices[1]; face[2] = v_vertices[7]; Euler::add_face(face, g); face[1] = v_vertices[0]; face[0] = v_vertices[7]; face[2] = v_vertices[10]; Euler::add_face(face, g); face[1] = v_vertices[0]; face[0] = v_vertices[10]; face[2] = v_vertices[11]; Euler::add_face(face, g); face[1] = v_vertices[1] ; face[0] = v_vertices[5] ; face[2] = v_vertices[9]; Euler::add_face(face, g); face[1] = v_vertices[5] ; face[0] = v_vertices[11]; face[2] = v_vertices[4]; Euler::add_face(face, g); face[1] = v_vertices[11]; face[0] = v_vertices[10]; face[2] = v_vertices[2]; Euler::add_face(face, g); face[1] = v_vertices[10]; face[0] = v_vertices[7] ; face[2] = v_vertices[6]; Euler::add_face(face, g); face[1] = v_vertices[7] ; face[0] = v_vertices[1] ; face[2] = v_vertices[8]; Euler::add_face(face, g); face[1] = v_vertices[3] ; face[0] = v_vertices[9] ; face[2] = v_vertices[4]; Euler::add_face(face, g); face[1] = v_vertices[3] ; face[0] = v_vertices[4] ; face[2] = v_vertices[2]; Euler::add_face(face, g); face[1] = v_vertices[3] ; face[0] = v_vertices[2] ; face[2] = v_vertices[6]; Euler::add_face(face, g); face[1] = v_vertices[3] ; face[0] = v_vertices[6] ; face[2] = v_vertices[8]; Euler::add_face(face, g); face[1] = v_vertices[3] ; face[0] = v_vertices[8] ; face[2] = v_vertices[9]; Euler::add_face(face, g); face[1] = v_vertices[4] ; face[0] = v_vertices[9] ; face[2] = v_vertices[5] ; Euler::add_face(face, g); face[1] = v_vertices[2] ; face[0] = v_vertices[4] ; face[2] = v_vertices[11]; Euler::add_face(face, g); face[1] = v_vertices[6] ; face[0] = v_vertices[2] ; face[2] = v_vertices[10]; Euler::add_face(face, g); face[1] = v_vertices[8] ; face[0] = v_vertices[6] ; face[2] = v_vertices[7] ; Euler::add_face(face, g); face[1] = v_vertices[9] ; face[0] = v_vertices[8] ; face[2] = v_vertices[1] ; Euler::add_face(face, g); return halfedge(v_vertices[1], v_vertices[0], g).first; } /*! * \ingroup PkgBGLHelperFct * * \brief Creates a row major ordered grid with `i` cells along the width and `j` cells * along the height and adds it to the graph `g`. * * \param i the number of cells along the width. * \param j the number of cells along the height. * \param g the graph in which the grid will be created. * \param calculator the functor that will assign coordinates to the grid vertices. * \param triangulated decides if a cell is composed of one quad or two triangles. * If `triangulated` is `true`, the diagonal of each cell is oriented from (0,0) to (1,1) * in the cell coordinates. * * \tparam CoordinateFunctor that takes two `boost::graph_traits::%vertices_size_type` * and outputs a `boost::property_traits::%type>::%value_type`. *

%Default: a point with positive integer coordinates (`w`, `h`, 0), with `w` in [0..`i`] and `h` in [0..`j`] * \returns the non-border non-diagonal halfedge that has the target vertex associated with the first point of the grid (default is (0,0,0) ). */ #ifndef DOXYGEN_RUNNING template #else template::vertices_size_type, typename boost::property_traits::type>::value_type> > #endif typename boost::graph_traits::halfedge_descriptor make_grid(typename boost::graph_traits::vertices_size_type i, typename boost::graph_traits::vertices_size_type j, Graph& g, const CoordinateFunctor& calculator, bool triangulated = false) { typedef typename boost::property_map::type Point_property_map; typedef typename boost::graph_traits::vertex_descriptor vertex_descriptor; typename boost::graph_traits::vertices_size_type w(i+1), h(j+1); Point_property_map vpmap = get(CGAL::vertex_point, g); // create the initial icosahedron //create the vertices std::vector v_vertices; v_vertices.resize(static_cast(w*h)); for(std::size_t k = 0; k < v_vertices.size(); ++k) v_vertices[k] = add_vertex(g); //assign the coordinates for(typename boost::graph_traits::vertices_size_type a = 0; a::vertices_size_type b=0; b face; if(triangulated) face.resize(3); else face.resize(4); for(typename boost::graph_traits::vertices_size_type a = 0; a::vertices_size_type b = 0; b typename boost::graph_traits::halfedge_descriptor make_grid(typename boost::graph_traits::vertices_size_type w, typename boost::graph_traits::vertices_size_type h, Graph& g, bool triangulated = false) { typedef typename boost::graph_traits::vertices_size_type Size_type; typedef typename boost::property_traits::type>::value_type Point; return make_grid(w, h, g, CGAL::Creator_uniform_3(), triangulated); } namespace internal { template inline typename boost::enable_if, void>::type clear_impl(FaceGraph& g) { g.clear(); } template inline typename boost::disable_if, void>::type clear_impl(FaceGraph& g) { typedef typename boost::graph_traits::edge_descriptor edge_descriptor; typedef typename boost::graph_traits::vertex_descriptor vertex_descriptor; typedef typename boost::graph_traits::face_descriptor face_descriptor; BOOST_FOREACH(edge_descriptor ed, edges(g)) { remove_edge(ed, g); } BOOST_FOREACH(vertex_descriptor vd, vertices(g)) { remove_vertex(vd, g); } BOOST_FOREACH(face_descriptor fd, faces(g)) { remove_face(fd, g); } } } //end of internal namespace /** * \ingroup PkgBGLHelperFct * * removes all vertices, faces and halfedges from a graph. Calls * `remove_edge()`, `remove_vertex()`, and `remove_face()` for each * edge, vertex or face. * * If the graph has a member function `clear()`, it will be called * instead. * * @tparam FaceGraph model of `MutableHalfedgeGraph` and `MutableFaceGraph` * * @param g the graph to clear * **/ template void clear(FaceGraph& g) { internal::clear_impl(g); CGAL_postcondition(num_edges(g) == 0); CGAL_postcondition(num_vertices(g) == 0); CGAL_postcondition(num_faces(g) == 0); } /** * \ingroup PkgBGLHelperFct * * checks whether the graph is empty, by checking that it does not contain any vertex. * * @tparam FaceGraph model of `FaceGraph` * * @param g the graph to test * **/ template bool is_empty(const FaceGraph& g) { return boost::empty(vertices(g)); } } // namespace CGAL // Include "Euler_operations.h" at the end, because its implementation // requires this header. #include #endif // CGAL_BOOST_GRAPH_HELPERS_H