// Copyright (c) 2014 INRIA Sophia-Antipolis (France) // All rights reserved. // // This file is part of CGAL (www.cgal.org). // You can redistribute it and/or modify it under the terms of the GNU // General Public License as published by the Free Software Foundation, // either version 3 of the License, or (at your option) any later version. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL: $ // $Id: $ // // // Author(s) : Clement Jamin #ifndef TANGENTIAL_COMPLEX_H #define TANGENTIAL_COMPLEX_H #include #include #include #include #include #include #include #include #include #include #include // CJTODO TEMP #include #include #include #include #include #include #include #include #ifdef CGAL_LINKED_WITH_TBB # include #endif namespace CGAL { using namespace Tangential_complex_; /// The class Tangential_complex represents a tangential complex template < typename Kernel, int Intrinsic_dimension, typename Concurrency_tag = CGAL::Parallel_tag, typename Tr = Regular_triangulation < Regular_triangulation_euclidean_traits< Epick_d > >, Triangulation_data_structure < typename Regular_triangulation_euclidean_traits< Epick_d > >::Dimension, Triangulation_vertex > >, std::size_t >, Triangulation_full_cell > > > > > > class Tangential_complex { typedef typename Kernel::FT FT; typedef typename Kernel::Point_d Point; typedef typename Kernel::Vector_d Vector; typedef Tr Triangulation; typedef typename Triangulation::Geom_traits Tr_traits; typedef typename Triangulation::Point Tr_point; typedef typename Triangulation::Bare_point Tr_bare_point; typedef typename Triangulation::Vertex_handle Tr_vertex_handle; typedef typename Triangulation::Full_cell_handle Tr_full_cell_handle; typedef std::vector Tangent_space_basis; typedef std::vector Points; typedef Point_cloud_data_structure Points_ds; typedef std::pair Tr_and_VH; typedef typename std::vector Tr_container; typedef typename std::vector TS_container; // Stores the index of the original Point in the ambient space /*struct Tr_point_with_index : public Tr_point { Tr_point_with_index(const Tr_point &p, std::size_t i) : Tr_point(p), index(i) {} std::size_t index; };*/ public: /// Constructor Tangential_complex(const Kernel &k = Kernel()) : m_k(k){} /// Constructor for a range of points template Tangential_complex(InputIterator first, InputIterator last, const Kernel &k = Kernel()) : m_k(k), m_points(first, last), m_points_ds(m_points, k) {} /// Destructor ~Tangential_complex() {} void compute_tangential_complex() { #ifdef CGAL_TC_PROFILING WallClockTimer t; #endif // We need to do that because we don't want the container to copy the // already-computed triangulations (while resizing) since it would // invalidate the vertex handles stored beside the triangulations m_triangulations.resize( m_points.size(), std::make_pair((Triangulation*)NULL, Tr_vertex_handle())); m_tangent_spaces.resize(m_points.size()); #ifdef CGAL_LINKED_WITH_TBB // Parallel if (boost::is_convertible::value) { // Apply moves in triangulation tbb::parallel_for(tbb::blocked_range(0, m_points.size()), Compute_tangent_triangulation(*this) ); } // Sequential else #endif // CGAL_LINKED_WITH_TBB { for (std::size_t i = 0 ; i < m_points.size() ; ++i) compute_tangent_triangulation(i); } #ifdef CGAL_TC_PROFILING std::cerr << "Tangential complex computed in " << t.elapsed() << " seconds." << std::endl; #endif } std::ostream &export_to_off(std::ostream & os) { const int ambient_dim = Ambient_dimension::value; if (ambient_dim < 2) { std::cerr << "Error: export_to_off => ambient dimension should be >= 2." << std::endl; os << "Error: export_to_off => ambient dimension should be >= 2." << std::endl; return os; } if (ambient_dim > 3) { std::cerr << "Warning: export_to_off => ambient dimension should be " "<= 3. Only the first 3 coordinates will be exported." << std::endl; } int num_coords = min(ambient_dim, 3); if (Intrinsic_dimension < 1 || Intrinsic_dimension > 3) { std::cerr << "Error: export_to_off => intrinsic dimension should be " "between 1 and 3." << std::endl; os << "Error: export_to_off => intrinsic dimension should be " "between 1 and 3." << std::endl; return os; } std::stringstream output; //******** VERTICES ************ Points::const_iterator it_p = m_points.begin(); Points::const_iterator it_p_end = m_points.end(); // For each point p for ( ; it_p != it_p_end ; ++it_p) { int i = 0; for ( ; i < num_coords ; ++i) output << (*it_p)[i] << " "; if (i == 2) output << "0"; output << std::endl; } //******** CELLS ************ std::size_t num_cells = 0; Tr_container::const_iterator it_tr = m_triangulations.begin(); Tr_container::const_iterator it_tr_end = m_triangulations.end(); // For each triangulation for ( ; it_tr != it_tr_end ; ++it_tr) { const Triangulation &tr = *it_tr->first; Tr_vertex_handle center_vh = it_tr->second; std::vector incident_cells; tr.incident_full_cells(center_vh, std::back_inserter(incident_cells)); std::vector::const_iterator it_c = incident_cells.begin(); std::vector::const_iterator it_c_end= incident_cells.end(); // For each triangulation for ( ; it_c != it_c_end ; ++it_c) { output << Intrinsic_dimension + 1 << " "; for (int i = 0 ; i < Intrinsic_dimension + 1 ; ++i) output << (*it_c)->vertex(i)->data() << " "; output << std::endl; ++num_cells; } } os << "OFF \n" << m_points.size() << " " << num_cells << " " << "0 \n" << output.str(); return os; } private: class Compare_distance_to_ref_point { public: Compare_distance_to_ref_point(Point const& ref, Kernel const& k) : m_ref(ref), m_k(k) {} bool operator()(Point const& p1, Point const& p2) { Kernel::Squared_distance_d sqdist = m_k.squared_distance_d_object(); return sqdist(p1, m_ref) < sqdist(p2, m_ref); } private: Point const& m_ref; Kernel const& m_k; }; struct Tr_vertex_to_global_point { typedef typename Tr_vertex_handle argument_type; typedef typename Point result_type; Tr_vertex_to_global_point(Points const& points) : m_points(points) {} result_type operator()(argument_type const& vh) const { return m_points[vh->data()]; } private: Points const& m_points; }; struct Tr_vertex_to_bare_point { typedef typename Tr_vertex_handle argument_type; typedef typename Tr_bare_point result_type; Tr_vertex_to_bare_point(Tr_traits const& traits) : m_traits(traits) {} result_type operator()(argument_type const& vh) const { typename Tr_traits::Point_drop_weight_d pdw = m_traits.point_drop_weight_d_object(); return pdw(vh->point()); } private: Tr_traits const& m_traits; }; #ifdef CGAL_LINKED_WITH_TBB // Functor for compute_tangential_complex function class Compute_tangent_triangulation { Tangential_complex & m_tc; public: // Constructor Compute_tangent_triangulation(Tangential_complex &tc) : m_tc(tc) {} // Constructor Compute_tangent_triangulation(const Compute_tangent_triangulation &ctt) : m_tc(ctt.m_tc) {} // operator() void operator()( const tbb::blocked_range& r ) const { for( size_t i = r.begin() ; i != r.end() ; ++i) m_tc.compute_tangent_triangulation(i); } }; #endif // CGAL_LINKED_WITH_TBB void compute_tangent_triangulation(std::size_t i) { //std::cerr << "***********************************************" << std::endl; Triangulation *p_local_tr = m_triangulations[i].first = new Triangulation(Intrinsic_dimension); const Tr_traits &local_tr_traits = p_local_tr->geom_traits(); Tr_vertex_handle ¢er_vertex = m_triangulations[i].second; // Kernel functor & objects //Kernel::Difference_of_points_d diff_points = m_k.difference_of_points_d_object(); // CJTODO: use that Get_functor::type k_diff_pts(m_k); // Triangulation's traits functor & objects Tr_traits::Squared_distance_d sqdist = local_tr_traits.squared_distance_d_object(); Tr_traits::Point_drop_weight_d drop_w = local_tr_traits.point_drop_weight_d_object(); Tr_traits::Center_of_sphere_d center_of_sphere = local_tr_traits.center_of_sphere_d_object(); // Estimate the tangent space const Point ¢er_pt = m_points[i]; m_tangent_spaces[i] = compute_tangent_space(center_pt); //*************************************************** // Build a minimal triangulation in the tangent space // (we only need the star of p) //*************************************************** const int NUM_NEIGHBORS = 150; std::size_t nearest_nb[NUM_NEIGHBORS]; m_points_ds.query_ANN( center_pt, NUM_NEIGHBORS, nearest_nb); /*const int NUM_NEIGHBORS = 150; std::size_t nearest_nb[NUM_NEIGHBORS]; for (int ii = 0 ; ii < NUM_NEIGHBORS ; ++ii) nearest_nb[ii] = ii;*/ // First, compute the projected points std::vector projected_points; FT max_squared_weight = 0; projected_points.reserve(NUM_NEIGHBORS); for (std::size_t j = 0 ; j < NUM_NEIGHBORS ; ++j) { // ith point = p, which is already inserted std::size_t idx = nearest_nb[j]; //if (idx != i) // CJTODO optim? { Tr_point wp = project_point(m_points[idx], center_pt, m_tangent_spaces[i]); projected_points.push_back(wp); FT w = local_tr_traits.point_weight_d_object()(wp); if (w > max_squared_weight) max_squared_weight = w; } } // Now we can insert the points // Insert p Tr_point wp = local_tr_traits.construct_weighted_point_d_object()( local_tr_traits.construct_point_d_object()(0, 0), CGAL::sqrt(max_squared_weight)); center_vertex = p_local_tr->insert(wp); center_vertex->data() = i; //std::cerr << "Inserted CENTER POINT of weight " << CGAL::sqrt(max_squared_weight) << std::endl; // While building the local triangulation, we keep the radius // of the sphere centered at "center_vertex" and which contains all the // circumspheres of the star of "center_vertex" FT star_sphere_squared_radius = std::numeric_limits::max(); // Insert the other points for (std::size_t j = 0 ; j < NUM_NEIGHBORS ; ++j) { std::size_t point_idx = nearest_nb[j]; Tr_point const& proj_pt = projected_points[j]; // ith point = p, which is already inserted if (point_idx != i) { if (m_k.squared_distance_d_object()( center_pt, m_points[point_idx]) > star_sphere_squared_radius) { continue; } FT squared_dist_to_tangent_plane = local_tr_traits.point_weight_d_object()(proj_pt); FT w = CGAL::sqrt(max_squared_weight - squared_dist_to_tangent_plane); Tr_point wp = local_tr_traits.construct_weighted_point_d_object()( drop_w(proj_pt), w); Tr_vertex_handle vh = p_local_tr->insert_if_in_star(wp, center_vertex); //Tr_vertex_handle vh = p_local_tr->insert(wp); if (vh != Tr_vertex_handle()) { vh->data() = point_idx; // Let's recompute star_sphere_squared_radius if (p_local_tr->current_dimension() >= Intrinsic_dimension) { star_sphere_squared_radius = 0.; // Get the incident cells and look for the biggest circumsphere std::vector incident_cells; p_local_tr->incident_full_cells( center_vertex, std::back_inserter(incident_cells)); for (auto cell : incident_cells) // CJTODO C++11 { if (p_local_tr->is_infinite(cell)) { star_sphere_squared_radius = std::numeric_limits::max(); break; } else { //********************************* Tangent_space_basis tsb; tsb.reserve(Intrinsic_dimension); Point const& orig = m_points[cell->vertex(0)->data()]; for (int ii = 1 ; ii <= Intrinsic_dimension ; ++ii) { tsb.push_back(k_diff_pts( m_points[cell->vertex(ii)->data()], orig)); } tsb = compute_gram_schmidt_basis(tsb, m_k); // CJTODO: write a project_point which returns a Tr_bare_point // and use it here std::vector proj_pts; std::vector::const_iterator it_p = proj_pts.begin(); std::vector::const_iterator it_p_end = proj_pts.end(); // For each point p for (int ii = 0 ; ii <= Intrinsic_dimension ; ++ii) { proj_pts.push_back(project_point( m_points[cell->vertex(ii)->data()], orig, tsb)); } Tr_bare_point c = center_of_sphere( boost::make_transform_iterator(proj_pts.begin(), drop_w), boost::make_transform_iterator(proj_pts.end(), drop_w)); //********************************* //Tr_vertex_to_global_point v2gp(m_points); //Point c = k_center_of_sphere( // boost::make_transform_iterator(cell->vertices_begin(), v2gp), // boost::make_transform_iterator(cell->vertices_end(), v2gp)); //********************************* FT sq_circumdiam = 4.*sqdist(c, drop_w(proj_pts[0])); if (sq_circumdiam > star_sphere_squared_radius) star_sphere_squared_radius = sq_circumdiam; } } } } //std::cerr << star_sphere_squared_radius << std::endl; } } // CJTODO DEBUG //std::cerr << "\nChecking topology and geometry..." // << (p_local_tr->is_valid(true) ? "OK.\n" : "Error.\n"); // DEBUG: output the local mesh into an OFF file //std::stringstream sstr; //sstr << "data/local_tri_" << i << ".off"; //std::ofstream off_stream_tr(sstr.str()); //CGAL::export_triangulation_to_off(off_stream_tr, *p_local_tr); } Tangent_space_basis compute_tangent_space(const Point &p) const { // Kernel functors Kernel::Construct_vector_d constr_vec = m_k.construct_vector_d_object(); Kernel::Squared_length_d sqlen = m_k.squared_length_d_object(); Kernel::Scaled_vector_d scaled_vec = m_k.scaled_vector_d_object(); Kernel::Scalar_product_d inner_pdct = m_k.scalar_product_d_object(); Kernel::Difference_of_vectors_d diff_vec = m_k.difference_of_vectors_d_object(); std::size_t neighbor_indices[NUM_POINTS_FOR_PCA]; m_points_ds.query_ANN( p, NUM_POINTS_FOR_PCA, neighbor_indices); //******************************* PCA ************************************* const int amb_dim = Ambient_dimension::value; // One row = one point Eigen::MatrixXd mat_points(NUM_POINTS_FOR_PCA, amb_dim); for (int j = 0 ; j < NUM_POINTS_FOR_PCA ; ++j) { for (int i = 0 ; i < amb_dim ; ++i) mat_points(j, i) = m_points[neighbor_indices[j]][i]; // CJTODO: Use kernel functor } Eigen::MatrixXd centered = mat_points.rowwise() - mat_points.colwise().mean(); Eigen::MatrixXd cov = centered.adjoint() * centered; Eigen::SelfAdjointEigenSolver eig(cov); // The eigenvectors are sorted in increasing order of their corresponding // eigenvalues Tangent_space_basis ts; for (int i = amb_dim - 1 ; i >= amb_dim - Intrinsic_dimension ; --i) { ts.push_back(constr_vec( amb_dim, eig.eigenvectors().col(i).data(), eig.eigenvectors().col(i).data() + amb_dim)); } //************************************************************************* //Vector n = m_k.point_to_vector_d_object()(p); //n = scaled_vec(n, 1./sqrt(sqlen(n))); //std::cerr << "IP = " << inner_pdct(n, ts[0]) << " & " << inner_pdct(n, ts[1]) << std::endl; return compute_gram_schmidt_basis(ts, m_k); /* // CJTODO: this is only for a sphere in R^3 Vector t1(-p[1] - p[2], p[0], p[0]); Vector t2(p[1] * t1[2] - p[2] * t1[1], p[2] * t1[0] - p[0] * t1[2], p[0] * t1[1] - p[1] * t1[0]); // Normalize t1 and t2 Kernel::Scaled_vector_d scale = m_k.scaled_vector_d_object(); Tangent_space_basis ts; ts.reserve(Intrinsic_dimension); ts.push_back(scale(t1, 1./CGAL::sqrt(sqlen(t1)))); ts.push_back(scale(t2, 1./CGAL::sqrt(sqlen(t2)))); return ts; // Alternative code (to be used later) //Vector n = m_k.point_to_vector_d_object()(p); //n = scaled_vec(n, 1./sqrt(sqlen(n))); //Vector t1(12., 15., 65.); //Vector t2(32., 5., 85.); //Tangent_space_basis ts; //ts.reserve(Intrinsic_dimension); //ts.push_back(diff_vec(t1, scaled_vec(n, inner_pdct(t1, n)))); //ts.push_back(diff_vec(t2, scaled_vec(n, inner_pdct(t2, n)))); //return compute_gram_schmidt_basis(ts, m_k); */ } // Project the point in the tangent space // The weight will be the squared distance between p and the projection of p Tr_point project_point(const Point &p, const Point &origin, const Tangent_space_basis &ts) const { Kernel::Scalar_product_d inner_pdct = m_k.scalar_product_d_object(); //Kernel::Difference_of_points_d diff_points= m_k.difference_of_points_d_object(); // CJTODO: use that Get_functor::type diff_points(m_k); std::vector coords; // Ambiant-space coords of the projected point std::vector p_proj(origin.cartesian_begin(), origin.cartesian_end()); // CJTODO: use kernel functors? coords.reserve(Intrinsic_dimension); for (std::size_t i = 0 ; i < Intrinsic_dimension ; ++i) { // Compute the inner product p * ts[i] Vector v = diff_points(p, origin); FT coord = inner_pdct(v, ts[i]); coords.push_back(coord); // p_proj += coord * v; for (int j = 0 ; j < Ambient_dimension::value ; ++j) p_proj[i] += coord * ts[i][j]; } Point projected_pt(Ambient_dimension::value, p_proj.begin(), p_proj.end()); return Tr_point( Tr_bare_point(Intrinsic_dimension, coords.begin(), coords.end()), m_k.squared_distance_d_object()(p, projected_pt)); } private: const Kernel m_k; Points m_points; Points_ds m_points_ds; TS_container m_tangent_spaces; Tr_container m_triangulations; // Contains the triangulations // and their center vertex }; // /class Tangential_complex } // end namespace CGAL #endif // TANGENTIAL_COMPLEX_H