// Copyright (c) 1999 Utrecht University (The Netherlands), // ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany), // INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg // (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria), // and Tel-Aviv University (Israel). All rights reserved. // // This file is part of CGAL (www.cgal.org); you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public License as // published by the Free Software Foundation; version 2.1 of the License. // See the file LICENSE.LGPL distributed with CGAL. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // // // Author(s) : Stefan Schirra #ifndef CGAL_HOMOGENEOUS_POINT_2_H #define CGAL_HOMOGENEOUS_POINT_2_H #include #include #include #include #include #include #include #include CGAL_BEGIN_NAMESPACE template < class R_ > class PointH2 { typedef typename R_::FT FT; typedef typename R_::RT RT; typedef typename R_::Vector_2 Vector_2; typedef typename R_::Point_2 Point_2; typedef typename R_::Direction_2 Direction_2; typedef Threetuple Rep; typedef typename R_::template Handle::type Base; typedef Rational_traits Rat_traits; Base base; public: typedef FT Cartesian_coordinate_type; typedef const RT& Homogeneous_coordinate_type; typedef Cartesian_coordinate_iterator_2 Cartesian_const_iterator; typedef R_ R; PointH2() {} PointH2(const Origin &) : base (RT(0), RT(0), RT(1)) {} template < typename Tx, typename Ty > PointH2(const Tx & x, const Ty & y, typename boost::enable_if< boost::mpl::and_, boost::is_convertible > >::type* = 0) : base(x, y, RT(1)) {} PointH2(const FT& x, const FT& y) : base(Rat_traits().numerator(x) * Rat_traits().denominator(y), Rat_traits().numerator(y) * Rat_traits().denominator(x), Rat_traits().denominator(x) * Rat_traits().denominator(y)) { CGAL_kernel_assertion(hw() > 0); } PointH2(const RT& hx, const RT& hy, const RT& hw) { if ( hw >= RT(0) ) base = Rep( hx, hy, hw); else base = Rep(-hx,-hy,-hw); } bool operator==( const PointH2& p) const; bool operator!=( const PointH2& p) const; const RT & hx() const { return get(base).e0; }; const RT & hy() const { return get(base).e1; }; const RT & hw() const { return get(base).e2; }; FT x() const { return FT(hx()) / FT(hw()); }; FT y() const { return FT(hy()) / FT(hw()); }; FT cartesian(int i) const; FT operator[](int i) const; const RT & homogeneous(int i) const; Cartesian_const_iterator cartesian_begin() const { return Cartesian_const_iterator(static_cast(this), 0); } Cartesian_const_iterator cartesian_end() const { return Cartesian_const_iterator(static_cast(this), 2); } int dimension() const; Direction_2 direction() const; }; template < class R > CGAL_KERNEL_INLINE bool PointH2::operator==( const PointH2& p) const { // FIXME : Predicate return ( (hx() * p.hw() == p.hx() * hw() ) &&(hy() * p.hw() == p.hy() * hw() ) ); } template < class R > inline bool PointH2::operator!=( const PointH2& p) const { return !(*this == p); } template < class R > CGAL_KERNEL_INLINE typename PointH2::FT PointH2::cartesian(int i) const { CGAL_kernel_precondition( (i==0 || i==1) ); if (i==0) return x(); return y(); } template < class R > CGAL_KERNEL_INLINE const typename PointH2::RT & PointH2::homogeneous(int i) const { CGAL_kernel_precondition( (i>=0) && (i<=2) ); if (i==0) return hx(); if (i==1) return hy(); return hw(); } template < class R > inline typename PointH2::FT PointH2::operator[](int i) const { return cartesian(i); } template < class R > inline int PointH2::dimension() const { return 2; } template < class R > CGAL_KERNEL_INLINE typename PointH2::Direction_2 PointH2::direction() const { return typename PointH2::Direction_2(*this); } CGAL_END_NAMESPACE #endif // CGAL_HOMOGENEOUS_POINT_2_H