// Copyright (c) 2010-2011 CNRS and LIRIS' Establishments (France). // All rights reserved. // // This file is part of CGAL (www.cgal.org); you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public License as // published by the Free Software Foundation; either version 3 of the License, // or (at your option) any later version. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // // Author(s) : Guillaume Damiand // #ifndef CGAL_COMBINATORIAL_MAP_OPERATIONS_H #define CGAL_COMBINATORIAL_MAP_OPERATIONS_H 1 #include #include #include namespace CGAL { /** @file Combinatorial_map_operations.h * Some operations to modify a combinatorial map. */ /** Insert a vertex in the given 2-cell which is splitted in triangles, * once for each inital edge of the facet. * @param amap the used combinatorial map. * @param adart a dart of the facet to triangulate. * @return A dart incident to the new vertex. */ template < class Map > typename Map::Dart_handle insert_cell_0_in_cell_2(Map& amap, typename Map::Dart_handle adart) { CGAL_assertion(adart != NULL && adart!=Map::null_dart_handle); typename Map::Dart_handle first = adart, prev = NULL, cur = NULL; typename Map::Dart_handle n1 = NULL, n2 = NULL; typename Map::Dart_handle nn1 = NULL, nn2 = NULL; // If the facet is open, we search the dart 0-free while (!first->is_free(0) && first->beta(0) != adart) first = first->beta(0); // Stack of couple of dart and dimension for which // we must call on_split functor std::stack > tosplit; // Mark used to mark darts already treated. int treated = amap.get_new_mark(); // Stack of marked darts std::stack tounmark; // Now we run through the facet for (CGAL::CMap_dart_iterator_basic_of_orbit it(amap,first); it.cont();) { cur = it; ++it; amap.mark(cur, treated); tounmark.push(cur); if ( cur!=first ) { if ( amap.template degroup_attribute_of_dart<2, typename Map::template Dart_of_involution_range<1> > (first, cur) ) tosplit.push(internal::Couple_dart_and_dim (first,cur,2)); } if (!cur->is_free(0)) { n1 = amap.create_dart(); amap.link_beta_0(cur, n1); } else n1 = NULL; if (!cur->is_free(1)) { n2 = amap.create_dart(); amap.link_beta_1(cur, n2); } else n2 = NULL; if (n1 != NULL && n2 != NULL) amap.link_beta_0(n1, n2); if (n1 != NULL && prev != NULL) amap.link_beta_for_involution(prev, n1, 2); for (unsigned int dim=3; dim<=Map::dimension; ++dim) { if ( !adart->is_free(dim) ) { if ( !amap.is_marked(cur->beta(dim), treated) ) { if (n1!=NULL) { nn1=amap.create_dart(); amap.link_beta_1(cur->beta(dim), nn1); amap.link_beta_for_involution(n1, nn1, dim); } else nn1=NULL; if (n2!=NULL) { nn2=amap.create_dart(); amap.link_beta_0(cur->beta(dim), nn2); amap.link_beta_for_involution(n2, nn2, dim); } else nn2=NULL; if (nn1 != NULL && nn2 != NULL) amap.basic_link_beta_1(nn1, nn2); if (nn1 != NULL && prev != NULL) amap.link_beta_for_involution(nn1, prev->beta(dim), 2); amap.mark(cur->beta(dim), treated); tounmark.push(cur->beta(dim)); } else { if ( n1!=NULL ) amap.link_beta_for_involution(n1, cur->beta(dim)->beta(1), dim); if ( n2!=NULL ) amap.link_beta_for_involution(n2, cur->beta(dim)->beta(0), dim); } } } prev = n2; } if (n2 != NULL) { amap.link_beta_for_involution(first->beta(0), n2, 2); for (unsigned int dim=3; dim<=Map::dimension; ++dim) { if ( !adart->is_free(dim) ) { amap.link_beta_for_involution(first->beta(0)->beta(dim), n2->beta(dim), 2); } } } // Now we unmark all marked darts while ( !tounmark.empty() ) { amap.unmark(tounmark.top(), treated); tounmark.pop(); } CGAL_assertion(amap.is_whole_map_unmarked(treated)); amap.free_mark(treated); while ( !tosplit.empty() ) { internal::Couple_dart_and_dim c=tosplit.top(); tosplit.pop(); internal::Call_split_functor::run(c.d1, c.d2); } return n1; } /** Test if a i-cell can be removed. * An i-cell can be removed if i==Map::dimension, * or if there are at most two (i+1)-cell incident to it. * @param adart a dart of the i-cell. * @return true iff the i-cell can be removed. */ template < class Map, unsigned int i > bool is_removable(const Map& amap, typename Map::Dart_const_handle adart) { CGAL_assertion(adart != NULL); CGAL_static_assertion(0<=i && i<=Map::dimension); if ( i==Map::dimension ) return true; if ( i==Map::dimension-1 ) return true; // TODO ? Optimisation for dim-2, and to not test all // the darts of the cell ? bool res = true; for (CMap_dart_const_iterator_of_cell it(amap, adart); res && it.cont(); ++it) { if (it->beta(i+2)->beta(i+1) != it->beta_inv(i+1)->beta(i+2) ) res = false; } return res; } /** Remove a i-cell, 0 struct Remove_cell_functor { static size_t run(Map& amap, typename Map::Dart_handle adart) { CGAL_static_assertion ( 1<=i && i(amap, adart)) ); size_t res = 0; // 1) We group the two (i+1)-cells if they exist. if (!adart->is_free(i+1)) amap.template group_attribute(adart, adart->beta(i+1)); typename Map::Dart_handle d1, d2; int mark = amap.get_new_mark(); std::vector to_erase; // 2) We mark all the darts of the i-cell. { for ( CMap_dart_iterator_basic_of_cell it(amap,adart,mark); it.cont(); ++it ) { to_erase.push_back(it); amap.mark(it,mark); ++res; } } // Stack of couple of dart for which we must call degroup_all_attributes typedef std::pair Dart_pair; std::stack todegroup; // 3) We modify the darts of the cells incident to the removed i-cell // when they are marked to remove. typename std::vector::iterator it = to_erase.begin(); for (; it != to_erase.end(); ++it) { amap.update_dart_of_all_attributes(*it, mark); } // 4) For each dart of the cell, we modify i-link of neighbors. for ( it=to_erase.begin(); it != to_erase.end(); ++it) { d1 = (*it)->beta_inv(i); while ( d1!=Map::null_dart_handle && amap.is_marked(d1, mark) ) { d1 = d1->beta(i+1)->beta_inv(i); if (d1 == (*it)->beta_inv(i)) d1 = Map::null_dart_handle; } d2 = (*it)->beta(i+1)->beta(i); while ( d2!=Map::null_dart_handle && amap.is_marked(d2, mark) ) { d2 = d2->beta(i+1)->beta(i); if ( d2==(*it)->beta(i+1)->beta(i) ) d2=Map::null_dart_handle; } // TODO ? We can optimize by using map.basic_link_beta but we // need to mark the second dart to not process another time... if (d1 != Map::null_dart_handle) { if (d2 != Map::null_dart_handle) { d1->basic_link_beta(d2, i); // Here special case for edge, TODO special method ? if ( i==1 ) d2->basic_link_beta(d1, 0); } else { if ( !d1->is_free(i) ) { if ( !amap.is_marked(d1->beta(i), mark) ) todegroup.push(Dart_pair(d1, d1->beta(i))); d1->unlink_beta(i); } } } else if (d2 != Map::null_dart_handle) { if ( !d2->is_free(CGAL_BETAINV(i)) ) { if ( !amap.is_marked(d2->beta_inv(i), mark) ) todegroup.push(Dart_pair(d2, d2->beta_inv(i))); d2->unlink_beta(CGAL_BETAINV(i)); } } if ((*it)->is_free(i+1) && !(*it)->is_free(i)) { d1 = (*it)->beta(i); if ( !d1->is_free(CGAL_BETAINV(i)) ) { if ( !amap.is_marked(d1->beta_inv(i), mark)) todegroup.push(Dart_pair(d1, d1->beta_inv(i))); d1->unlink_beta(CGAL_BETAINV(i)); } } } // 5) We degroup all the pair while ( !todegroup.empty() ) { Dart_pair p=todegroup.top(); todegroup.pop(); amap.degroup_all_attributes(p.first,p.second); } // 6) We remove all the darts of the cell. for ( it=to_erase.begin(); it!=to_erase.end(); ++it ) { amap.erase_dart(*it); } CGAL_assertion( amap.is_whole_map_unmarked(mark) ); amap.free_mark(mark); // CGAL_postcondition(amap.is_valid()); return res; } }; /** Remove a d-cell, in a d-map (special case). * @param amap the used combinatorial map. * @param adart a dart of the volume to remove. * @return the number of deleted darts. */ template struct Remove_cell_functor { static size_t run(Map& amap, typename Map::Dart_handle adart) { CGAL_assertion( adart!=NULL ); std::vector to_erase; int mark = amap.get_new_mark(); size_t res = 0; // Stack of couple of dart for which we must call degroup_all_attributes typedef std::pair Dart_pair; std::stack todegroup; // 1) We mark all the darts of the d-cell. { for (CMap_dart_iterator_basic_of_cell it(amap,adart,mark); it.cont(); ++it) { to_erase.push_back(it); amap.mark(it,mark); ++res; } } // 2) We update the cells incident to the remove volume. typename std::vector::iterator it = to_erase.begin(); for (; it != to_erase.end(); ++it) { amap.update_dart_of_all_attributes(*it, mark); } // 3) We unlink all the darts of the volume for beta-d. for ( it = to_erase.begin(); it != to_erase.end(); ++it ) { if ( !(*it)->is_free(Map::dimension) ) { todegroup.push(Dart_pair(*it, (*it)->beta(Map::dimension))); amap.unlink_beta_for_involution(*it,Map::dimension); } } // 4) We degroup all the pairs while ( !todegroup.empty() ) { Dart_pair p=todegroup.top(); todegroup.pop(); amap.degroup_all_attributes(p.first,p.second); } // 5) last, we remove all the darts of the d-cell. for ( it = to_erase.begin(); it != to_erase.end(); ++it ) { amap.erase_dart(*it); } CGAL_assertion( amap.is_whole_map_unmarked(mark) ); amap.free_mark(mark); //CGAL_postcondition(amap.is_valid()); return res; } }; /** Remove a vertex, and merge eventually both incident edges. * @param amap the used combinatorial map. * @param adart a dart of the vertex to remove. * @return the number of deleted darts. */ template struct Remove_cell_functor { static size_t run(Map& amap, typename Map::Dart_handle adart) { CGAL_assertion( (is_removable(amap,adart)) ); size_t res = 0; // Stack of couple of dart for which we must call degroup_all_attributes typedef std::pair Dart_pair; std::stack todegroup; // 1) We group the two edges if they exist. if (!adart->is_free(0)) amap.template group_attribute<1>(adart, adart->beta(0)); typename Map::Dart_handle d1, d2; int mark = amap.get_new_mark(); std::vector to_erase; // 2) We mark all the darts of the vertex. { for ( CMap_dart_iterator_basic_of_cell it(amap,adart,mark); it.cont(); ++it ) { to_erase.push_back(it); amap.mark(it,mark); ++res; } } // 3) We modify the darts of the cells incident to the vertex // when they are marked to remove. typename std::vector::iterator it = to_erase.begin(); for (; it != to_erase.end(); ++it) { amap.update_dart_of_all_attributes(*it, mark); } // 4) For each dart of the cell, we modify link of neighbors. for ( it=to_erase.begin(); it!=to_erase.end(); ++it ) { if ( !(*it)->is_free(0) ) { if ( !(*it)->is_free(1) && (*it)->beta(0)!=(*it) ) amap.template basic_link_beta<1>((*it)->beta(0), (*it)->beta(1)); else { todegroup.push(Dart_pair((*it)->beta(0), *it)); (*it)->beta(0)->unlink_beta(1); } for ( unsigned int j=2; j<=Map::dimension; ++j ) { if ( !(*it)->is_free(j) ) amap.basic_link_beta((*it)->beta(0), (*it)->beta(j), j); //((*it)->beta(0))->basic_link_beta((*it)->beta(j),j); } } else { if ( !(*it)->is_free(1) ) { todegroup.push(Dart_pair((*it)->beta(1), *it)); (*it)->beta(1)->unlink_beta(0); } for ( unsigned int j=2; j<=Map::dimension; ++j ) { if ( !(*it)->is_free(j) ) amap.unlink_beta(*it, j); } } } // 5) We degroup all the pairs while ( !todegroup.empty() ) { Dart_pair p=todegroup.top(); todegroup.pop(); amap.degroup_all_attributes(p.first,p.second); } // 6) We remove all the darts of the cell. for (it = to_erase.begin(); it != to_erase.end(); ++it) { amap.erase_dart(*it); } CGAL_assertion( amap.is_whole_map_unmarked(mark) ); amap.free_mark(mark); // CGAL_postcondition( amap.is_valid() ); return res; } }; /** Remove a i-cell, 0<=i<=dimension. * @param amap the used combinatorial map. * @param adart a dart of the i-cell to remove. * @return the number of deleted darts. */ template < class Map, unsigned int i > size_t remove_cell(Map& amap, typename Map::Dart_handle adart) { return Remove_cell_functor::run(amap,adart); } /** Test if an edge can be inserted onto a 2-cell between two given darts. * @param amap the used combinatorial map. * @param adart1 a first dart. * @param adart2 a second dart. * @return true iff an edge can be inserted between adart1 and adart2. */ template < class Map > bool is_insertable_cell_1_in_cell_2(const Map& amap, typename Map::Dart_const_handle adart1, typename Map::Dart_const_handle adart2) { CGAL_assertion(adart1 != NULL && adart2 != NULL); if ( adart1==adart2 ) return false; for ( CMap_dart_const_iterator_of_orbit it(amap,adart1); it.cont(); ++it ) { if ( it==adart2 ) return true; } return false; } /** Test if a 2-cell can be inserted onto a given 3-cell along * a path of edges. * @param amap the used combinatorial map. * @param afirst iterator on the begining of the path. * @param alast iterator on the end of the path. * @return true iff a 2-cell can be inserted along the path. */ template bool is_insertable_cell_2_in_cell_3(const Map& amap, InputIterator afirst, InputIterator alast) { CGAL_static_assertion( Map::dimension>= 3 ); // The path must have at least one dart. if (afirst==alast) return false; typename Map::Dart_const_handle prec = NULL; typename Map::Dart_const_handle od = NULL; for (InputIterator it(afirst); it!=alast; ++it) { // The path must contain only non empty darts. if (*it == NULL || *it==Map::null_dart_handle) return false; // Two consecutive darts of the path must belong to two edges // incident to the same vertex of the same volume. if (prec != NULL) { od = prec->other_extremity(); if ( od==Map::null_dart_handle ) return false; // of and *it must belong to the same vertex of the same volume if ( !belong_to_same_cell(amap, od, *it) ) return false; } prec = *it; } // The path must be closed. od = prec->other_extremity(); if ( od==Map::null_dart_handle ) return false; if (!belong_to_same_cell(amap, od, *afirst)) return false; return true; } /** Insert a vertex in a given edge. * @param amap the used combinatorial map. * @param adart a dart of the edge (!=NULL && !=null_dart_handle). * @return a dart of the new vertex. */ template typename Map::Dart_handle insert_cell_0_in_cell_1(Map& amap, typename Map::Dart_handle adart) { CGAL_assertion(adart != NULL && adart!=Map::null_dart_handle); typename Map::Dart_handle d1, d2; int mark = amap.get_new_mark(); std::vector vect; { for (typename Map::template Dart_of_cell_range<1>::iterator it= amap.template darts_of_cell<1>(adart).begin(); it != amap.template darts_of_cell<1>(adart).end(); ++it) vect.push_back(it); } // 3) For each dart of the cell, we modify link of neighbors. typename std::vector::iterator it = vect.begin(); for (; it != vect.end(); ++it) { d1 = amap.create_dart(); if (!(*it)->is_free(1)) { amap.template basic_link_beta<1>(d1, (*it)->beta(1)); } for ( unsigned int dim = 2; dim<=Map::dimension; ++dim ) { if (!(*it)->is_free(dim) && amap.is_marked((*it)->beta(dim), mark)) { amap.basic_link_beta((*it)->beta(dim), d1, dim); amap.basic_link_beta(*it, (*it)->beta(dim)->beta(1), dim); } } amap.template basic_link_beta<1>(*it, d1); amap.group_all_dart_attributes_except(*it, d1, 1); amap.mark(*it, mark); } for (it = vect.begin(); it != vect.end(); ++it) { amap.unmark(*it, mark); } amap.free_mark(mark); amap.template degroup_attribute<1>(adart, adart->beta(1)); return adart->beta(1); } /** Insert a dangling edge in a 2-cell between given by a dart. * @param amap the used combinatorial map. * @param adart1 a first dart of the facet (!=NULL && !=null_dart_handle). * @return a dart of the new edge, not incident to the vertex of adart1. */ template typename Map::Dart_handle insert_dangling_cell_1_in_cell_2(Map& amap, typename Map::Dart_handle adart1) { CGAL_assertion(adart1!=NULL && adart1!=Map::null_dart_handle); int mark1 = amap.get_new_mark(); std::vector to_unmark; { for ( CMap_dart_iterator_basic_of_cell it(amap,adart1,mark1); it.cont(); ++it ) { to_unmark.push_back(it); amap.mark(it,mark1); } } typename Map::Dart_handle d1 = NULL; typename Map::Dart_handle d2 = NULL; unsigned int s1 = 0; int treated = amap.get_new_mark(); CGAL::CMap_dart_iterator_of_involution it1(amap,adart1); for ( ; it1.cont(); ++it1) { d1 = amap.create_dart(); d2 = amap.create_dart(); if ( amap.is_marked(it1, mark1) ) s1 = 0; else s1 = 1; if ( !it1->is_free(s1) ) { if ( s1==0 ) amap.template link_beta<1>(it1->beta(0), d2); else amap.template link_beta<0>(it1->beta(1), d2); } if (s1==0) { amap.template link_beta<0>(it1, d1); amap.template basic_link_beta<0>(d1,d2); } else { amap.template link_beta<1>(it1, d1); amap.template basic_link_beta<1>(d1,d2); } amap.link_beta_for_involution(d1, d2, 2); for ( unsigned int dim=3; dim<=Map::dimension; ++dim) { if ( !it1->is_free(dim) && amap.is_marked(it1->beta(dim), treated) ) { amap.basic_link_beta_for_involution(it1->beta(dim)->beta_inv(s1), d1, dim); amap.basic_link_beta_for_involution (it1->beta(dim)->beta_inv(s1)->beta(2), d2, dim); } } amap.mark(it1,treated); } // amap.template degroup_attribute<1>(adart1, adart1->beta(0)); // amap.template degroup_attribute<2>(d1, d2); for ( it1.rewind(); it1.cont(); ++it1 ) { amap.unmark(it1,treated); } CGAL_assertion( amap.is_whole_map_unmarked(treated) ); amap.free_mark(treated); typename std::vector::iterator it = to_unmark.begin(); for (; it != to_unmark.end(); ++it) { amap.unmark(*it, mark1); } CGAL_assertion( amap.is_whole_map_unmarked(mark1) ); amap.free_mark(mark1); // CGAL_postcondition(amap.is_valid()); return adart1->beta(0); } /** Insert an edge in a 2-cell between two given darts. * @param amap the used combinatorial map. * @param adart1 a first dart of the facet (!=NULL && !=null_dart_handle). * @param adart2 a second dart of the facet. If NULL insert a dangling edge. * @return a dart of the new edge, and not incident to the * same vertex than adart1. */ template typename CMap::Dart_handle insert_cell_1_in_cell_2(CMap& amap, typename CMap::Dart_handle adart1, typename CMap::Dart_handle adart2) { if ( adart2==NULL ) return insert_dangling_cell_1_in_cell_2(amap,adart1); CGAL_assertion(is_insertable_cell_1_in_cell_2(amap, adart1, adart2)); int m1 = amap.get_new_mark(); CMap_dart_iterator_basic_of_involution it1 = CMap_dart_iterator_basic_of_involution(amap, adart1, m1); int m2 = amap.get_new_mark(); CMap_dart_iterator_basic_of_involution it2 = CMap_dart_iterator_basic_of_involution(amap, adart2, m2); int mark1 = amap.get_new_mark(); std::vector to_unmark; { for ( CMap_dart_iterator_basic_of_cell it(amap,adart1,mark1); it.cont(); ++it ) { to_unmark.push_back(it); amap.mark(it,mark1); } } typename CMap::Dart_handle d1 = NULL; typename CMap::Dart_handle d2 = NULL; unsigned int s1 = 0; int treated = amap.get_new_mark(); for ( ; it1.cont(); ++it1, ++it2) { CGAL_assertion (it2.cont() ); d1 = amap.create_dart(); d2 = amap.create_dart(); if ( amap.is_marked(it1, mark1) ) s1 = 0; else s1 = 1; if ( !it1->is_free(s1) ) { if ( s1==0 ) amap.basic_link_beta_1(it1->beta(0), d2); else amap.link_beta_0(it1->beta(1), d2); } if ( !it2->is_free(s1) ) { if ( s1==0 ) amap.basic_link_beta_1(it2->beta(0), d1); else amap.link_beta_0(it2->beta(1), d1); } if ( s1==0 ) { amap.link_beta_0(it1, d1); amap.link_beta_0(it2, d2); } else { amap.basic_link_beta_1(it1, d1); amap.basic_link_beta_1(it2, d2); } amap.link_beta_for_involution(d2, d1, 2); for ( unsigned int dim=3; dim<=CMap::dimension; ++dim) { if ( !it1->is_free(dim) && amap.is_marked(it1->beta(dim), treated) ) { amap.basic_link_beta_for_involution (it1->beta(dim)->beta_inv(s1), d1, dim); amap.basic_link_beta_for_involution (it1->beta(dim)->beta_inv(s1)->beta(2), d2, dim); } } amap.mark(it1,treated); } // amap.template degroup_attribute<1>(adart1, adart1->beta(0)); amap.template degroup_attribute<2>(d1, d2); amap.negate_mark(m1); amap.negate_mark(m2); it1.rewind(); it2.rewind(); for ( ; it1.cont(); ++it1, ++it2) { amap.mark(it1,m1); amap.unmark(it1,treated); amap.mark(it2,m2); } amap.negate_mark(m1); amap.negate_mark(m2); CGAL_assertion( amap.is_whole_map_unmarked(m1) ); CGAL_assertion( amap.is_whole_map_unmarked(m2) ); CGAL_assertion( amap.is_whole_map_unmarked(treated) ); amap.free_mark(m1); amap.free_mark(m2); amap.free_mark(treated); typename std::vector::iterator it = to_unmark.begin(); for (; it != to_unmark.end(); ++it) { amap.unmark(*it, mark1); } CGAL_assertion( amap.is_whole_map_unmarked(mark1) ); amap.free_mark(mark1); // CGAL_postcondition(amap.is_valid()); return adart1->beta(0); } /** Insert a 2-cell in a given 3-cell along a path of darts. * @param amap the used combinatorial map. * @param afirst iterator on the begining of the path. * @param alast iterator on the end of the path. * @return a dart of the new 2-cell. */ template typename Map::Dart_handle insert_cell_2_in_cell_3(Map& amap, InputIterator afirst, InputIterator alast) { CGAL_assertion(is_insertable_cell_2_in_cell_3(amap,afirst,alast)); typename Map::Dart_handle prec = NULL, d = NULL, dd = NULL, first = NULL; bool withBeta3 = false; { for (InputIterator it(afirst); it!=alast; ++it) { if (!(*it)->is_free(2)) withBeta3 = true; } } { for (InputIterator it(afirst); it!=alast; ++it) { d = amap.create_dart(); if (withBeta3) { dd = amap.create_dart(); amap.basic_link_beta_for_involution(d, dd, 3); } if (prec != NULL) { amap.template link_beta<0>(prec, d); if (withBeta3) amap.template link_beta<1>(prec->beta(3), dd); } else first = d; if (!(*it)->is_free(2)) amap.link_beta_for_involution((*it)->beta(2), dd, 2); amap.link_beta_for_involution(*it, d, 2); prec = d; } } amap.template link_beta<0>(prec, first); if (withBeta3) { amap.template link_beta<1>(prec->beta(3), first->beta(3)); } // Make copies of the new facet for dimension >=4 for ( unsigned int dim=4; dim<=Map::dimension; ++dim ) { if ( !first->is_free(dim) ) { typename Map::Dart_handle first2 = NULL; prec = NULL; for ( CMap_dart_iterator_of_orbit it(amap, first); it.cont(); ++it ) { d = amap.create_dart(); amap.link_beta_for_involution(it->beta(2),d,dim); if ( withBeta3 ) { dd = amap.create_dart(); amap.link_beta_for_involution(it->beta(2)->beta(3),dd,dim); amap.basic_link_beta_for_involution(d, dd, 3); } if ( prec!=NULL ) { amap.link_beta_0(prec,d); if ( withBeta3 ) { amap.link_beta_1(prec->beta(3),dd); } } else first2 = prec; for ( unsigned dim2=2; dim2<=Map::dimension; ++dim2 ) { if ( dim2+1!=dim && dim2!=dim && dim2!=dim+1 ) { if ( !it->is_free(dim2) && it->beta(dim2)->is_free(dim) ) amap.basic_link_beta_for_involution(it->beta(dim2)->beta(dim), d, dim2); if ( withBeta3 && !it->beta(3)->is_free(dim2) && it->beta(3)->beta(dim2)->is_free(dim) ) amap.basic_link_beta_for_involution (it->beta(3)->beta(dim2)->beta(dim), dd, dim2); } } prec = d; } amap.template link_beta<0>( prec, first2 ); if ( withBeta3 ) { amap.template link_beta<1>( prec->beta(3), first2->beta(3) ); } } } // Degroup the attributes if ( withBeta3 ) amap.template degroup_attribute<3>( first, first->beta(3) ); // CGAL_postcondition(amap.is_valid()); return first; } } // namespace CGAL #endif // CGAL_COMBINATORIAL_MAP_OPERATIONS_H // // EOF //