% +------------------------------------------------------------------------+ % | Reference manual page: AABB_tree.tex % +------------------------------------------------------------------------+ % | 21.02.2009 Author % | Package: Package % | \RCSdef{\RCSAABBtreeRev}{$Id: header.tex 40270 2007-09-07 15:29:10Z lsaboret $} \RCSdefDate{\RCSAABBtreeDate}{$Date: 2007-09-07 17:29:10 +0200 (Ven, 07 sep 2007) $} % | \ccRefPageBegin %%RefPage: end of header, begin of main body % +------------------------------------------------------------------------+ \begin{ccRefClass}{AABB_tree} %% add template arg's if necessary %% \ccHtmlCrossLink{} %% add further rules for cross referencing links %% \ccHtmlIndexC[class]{} %% add further index entries \ccDefinition The class \ccRefName\ is a data structure for efficient intersection detection and projection in 3D. It builds a hierarchy of axis-aligned bounding boxes from a set of 3D geometric objects such as triangles, and can received intersection and projection queries, provided that the corresponding predicates are implemented in the traits class. The template parameter \ccc{Traits} stands for a traits class which must be a model of the concept \ccc{AABBTraits}. \ccInclude{AABB_tree.h} \ccTypes \ccTypedef{typedef Traits::Primitive Primitive;}{Type of input primitives.} \ccGlue \ccTypedef{typedef Traits::Intersection Intersection;}{Type of intersection result.} \ccGlue \ccTypedef{typedef Traits::Projection_query Projection_query;}{Type of projection query.} \ccGlue \ccTypedef{typedef Traits::Projection Projection;}{Type of projection point result.} %\ccNestedType{AABB}{some nested types} \ccCreation \ccCreationVariable{tree} %% choose variable name \ccConstructor{AABB_tree();}{Default constructor.} \ccConstructor{template < class ConstPrimitiveIterator> AABB_tree( ConstPrimitiveIterator begin, ConstPrimitiveIterator beyond, const bool construct_search_tree = false);} {Builds the datastructure. Type \ccc{ConstPrimitiveIterator} can be any const iterator on a container of \ccc{Primitive::Object} such that \ccc{Primitive} has a constructor taking a \ccc{ConstPrimitiveIterator} as argument. Flag \ccc{construct_search_tree} indicates if the search KD-tree used to accelerate the projection queries must be computed during the construction of the AABB tree. In the negative the KD-tree is constructed during the first call to a projection query. If no projection queries are issued during the life time of the tree, the default \ccc{false} flag saves memory and computations. } \ccOperations \ccMethod{void construct_search_tree();} { Constructs the internal search KD-tree used to accelerate the projection queries. The points in the search tree are taken from the primitives by calling the function \ccc{point_on} from the primitive.} \ccMethod{template void construct_search_tree(ConstPointIterator begin, ConstPointIterator beyond);} { Constructs the internal search KD-tree used to accelerate the projection queries from a specified point set. } % intersection tests \ccMethod{ template bool do_intersect(const Query & q);} { Returns \ccc{true} iff the query intersects the primitives. Type \ccc{Query} has to be a type for which \ccc{do_intersect} predicates have been defined in \ccc{Traits}.} \ccMethod{template size_t number_of_intersections(const Query& q );} {Returns the number of primitives intersected by the query. Type \ccc{Query} has to be a type for which \ccc{do_intersect} predicates have been defined in \ccc{Traits}.} \ccMethod{template OutputIterator all_intersections(const Query& query, OutputIterator out);} {Outputs to the iterator the list of all intersections between the query and input data. Type \ccc{Query} must be a type for which \ccc{do_intersect} predicates have been defined in \ccc{Traits}. The value type of OutputIterator is assumed to be \ccc{Intersection}.} \ccMethod{template bool any_intersection(const Query& query, Intersection& intersection);} {Returns \ccc{true} iff the query intersects the primitives. In the positive, saves the first encountered intersection to the second parameter. Type \ccc{Query} has to be a type for which \ccc{do_intersect} and intersection predicates have been defined in \ccc{Traits}.} \ccMethod{template OutputIterator all_intersected_primitives(const Query& query, OutputIterator out);} {Outputs to the iterator the list of intersected primitives. This function does not compute the intersection points and is hence faster than the function \ccc{all_intersections}. Type \ccc{Query} must be a type for which \ccc{do_intersect} predicates have been defined in \ccc{Traits}. The value type of OutputIterator is assumed to be \ccc{Primitive}.} \ccMethod{template bool any_intersected_primitive(const Query& query, Primitive& primitive);} {Return \ccc{true} iff the query intersects the primitive. In the positive, saves the first encountered primitive to the second parameter. Type \ccc{Query} has to be a type for which \ccc{do_intersect} and intersection predicates have been defined in \ccc{Traits}.} % pierre: to be fully generic Projection could be anything \ccMethod{Projection closest_point(const Projection_query & query, const Projection & hint);} {Returns the point on all input primitives which is closest to the query \ccc{q}. Parameter \ccc{hint} is assumed to be any point located on the input primitives (the closer \ccc{hint} to \ccc{q}, the faster the query). Parameter \ccc{hint} can be omitted. In this case an internal KD-tree data structure storing a point set located onto the input geometric objects is used to efficiently query the nearest hint point from the query.} \ccSeeAlso \ccc{AABBTraits}, \\ \ccc{AABBPrimitive}. \end{ccRefClass} % +------------------------------------------------------------------------+ %%RefPage: end of main body, begin of footer \ccRefPageEnd % EOF % +------------------------------------------------------------------------+