\begin{ccRefConcept}{PolynomialTraits_d::EvaluateHomogeneous} \ccDefinition This \ccc{AdaptableFunctor} interprets a \ccc{PolynomialTraits_d::Polynomial_d} as a homogeneous polynomial with respect to one variable, an provides respective evaluation. \ccRefines \ccc{AdaptableFunctor} \ccTypes \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccCreationVariable{evaluate_homogenouse} \ccTypedef{typedef PolynomialTraits_d::Coefficient result_type;}{} \ccOperations \ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p, PolynomialTraits_d::Innermost_coefficient u, PolynomialTraits_d::Innermost_coefficient v);} { return $p(u,v)$, with respect to the outermost variable. \\ The homogeneous degree is considered as equal to the degree of $p$. } %\ccMethod{result_type operator()(first_argument_type p, % second_argument_type u, % third_argument_type v, % fourth_argument_type h);} % { return $p(u,v)$, with respect to the outermost variable. \\ % The homogeneous degree is $h$. % \ccPrecond: $h \geq degree(p)$ } \ccMethod{result_type operator()( PolynomialTraits_d::Polynomial_d p, PolynomialTraits_d::Innermost_coefficient u, PolynomialTraits_d::Innermost_coefficient v, int i);} { return $p(u,v)$, with respect to the variable $x_i$. \\ The homogeneous degree is considered as equal to the $degree(p,i)$. \ccPrecond $0 \leq i < d$} %\ccHasModels \ccSeeAlso \ccRefIdfierPage{Polynomial_d}\\ \ccRefIdfierPage{PolynomialTraits_d}\\ \end{ccRefConcept}