\begin{ccRefConcept}{PolynomialTraits_d::GcdUpToConstantFactor} \ccDefinition This \ccc{AdaptableBinaryFunction} computes the $gcd$ {\em up to a constant factor (utcf)} of two polynomials of type \ccc{PolynomialTraits_d::Polynomial_d}. In case the base ring $R$, \ccc{PolynomialTraits_d::Innermost_coefficient}, is not a \ccc{UFDomain} or not a \ccc{Field} the polynomial ring $R[x_0,\dots,x_{d-1}]$ ,\ccc{PolynomialTraits_d::Polynomial_d}, may not possess greatest common divisor. However, since the $R$ is an integral domain one can consider its quotient field $Q(R)$ for which gcds of polynomials exist. A $gcd\_up_to_constant_factor(f,g)$ is a denominator-free constant multiple of $gcd(f,g)$ in $Q(R)[x_0,\dots,x_{d-1}]$. {\bf Note:} It may not be a divisor of $f$ and $g$ in $R[x_0,\dots,x_{d-1}]$. \ccRefines \ccc{AdaptableBinaryFunction} \ccTypes \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccCreationVariable{gcd_utcf} \ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d second_argument_type;}{} \ccOperations \ccMethod{result_type operator()(first_argument_type f, second_argument_type g);} {return a denominator-free, constant multiple of $gcd(f,g)$} %\ccHasModels \ccSeeAlso \ccRefIdfierPage{Polynomial_d}\\ \ccRefIdfierPage{PolynomialTraits_d}\\ \ccRefIdfierPage{PolynomialTraits_d::IntegralDivisionUpToConstantFactor}\\ \ccRefIdfierPage{PolynomialTraits_d::UnivariateContentUpToConstantFactor}\\ \ccRefIdfierPage{PolynomialTraits_d::SquareFreeFactorizationUpToConstantFactor}\\ \end{ccRefConcept}