\begin{ccRefConcept}{PolynomialTraits_d::TranslateHomogeneous} \ccDefinition Given numerator $a$ and denominator $b$ this \ccc{AdaptableFunctor} translates a \ccc{PolynomialTraits_d::Polynomial_d} $p$ with respect to one variable by $a/b$, that is, it computes $b^{degree(p)}\cdot p(x+a/b)$. Note that this functor operates on the polynomial in the univariate view, that is, the polynomial is considered as a univariate homogeneous polynomial in one specific variable. \ccRefines \ccc{AdaptableFunctor} \ccTypes \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccCreationVariable{fo} \ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}\ccGlue \ccOperations \ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p, PolynomialTraits_d::Innermost_coefficient_type a, PolynomialTraits_d::Innermost_coefficient_type b);} { Returns $b^{degree(p)}\cdot p(x+a/b)$, with respect to the outermost variable. } \ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p, PolynomialTraits_d::Innermost_coefficient_type a, PolynomialTraits_d::Innermost_coefficient_type b, int i);} { Same as first operator but for variable $x_i$. \ccPrecond $0 \leq i < d$ } %\ccHasModels \ccSeeAlso \ccRefIdfierPage{Polynomial_d}\\ \ccRefIdfierPage{PolynomialTraits_d}\\ \end{ccRefConcept}