// ====================================================================== // // Copyright (c) 1999 The CGAL Consortium // // This software and related documentation is part of an INTERNAL release // of the Computational Geometry Algorithms Library (CGAL). It is not // intended for general use. // // ---------------------------------------------------------------------- // // release : // release_date : // // file : Triangle_2.h // package : _2 // revision : $Revision$ // revision_date : $Date$ // author(s) : Andreas Fabri // // coordinator : MPI, Saarbruecken () // ====================================================================== #ifndef CGAL_TRIANGLE_2_H #define CGAL_TRIANGLE_2_H #ifndef CGAL_REP_CLASS_DEFINED #error no representation class defined #endif #if defined CGAL_HOMOGENEOUS_H || defined CGAL_SIMPLE_HOMOGENEOUS_H #include #endif #if defined CGAL_CARTESIAN_H || defined CGAL_SIMPLE_CARTESIAN_H #include #endif #include #include CGAL_BEGIN_NAMESPACE template class Triangle_2 : public R_::Triangle_2_base { public: typedef R_ R; typedef typename R::RT RT; typedef typename R::FT FT; typedef typename R::Triangle_2_base RTriangle_2; Triangle_2() : RTriangle_2() {} Triangle_2(const CGAL::Triangle_2 &t) : RTriangle_2((RTriangle_2&)t) {} Triangle_2(const RTriangle_2& t) : RTriangle_2(t) {} Triangle_2(const CGAL::Point_2 &p, const CGAL::Point_2 &q, const CGAL::Point_2 &r) : RTriangle_2(p,q,r) {} bool operator==(const CGAL::Triangle_2 &t) const { return RTriangle_2::operator==(t); } bool operator!=(const CGAL::Triangle_2 &t) const { return !(*this == t); } CGAL::Point_2 vertex(int i) const { return RTriangle_2::vertex(i); } CGAL::Point_2 operator[](int i) const { return vertex(i); } CGAL::Triangle_2 transform(const CGAL::Aff_transformation_2 &t) const { return RTriangle_2::transform(t); } CGAL::Triangle_2 opposite() const { return CGAL::Triangle_2(vertex(0), vertex(2), vertex(1)); } Orientation orientation() const { return RTriangle_2::orientation(); } Oriented_side oriented_side(const CGAL::Point_2 &p) const { return RTriangle_2::oriented_side(p); } Bounded_side bounded_side(const CGAL::Point_2 &p) const { return RTriangle_2::bounded_side(p); } bool has_on_boundary(const CGAL::Point_2 &p) const { return RTriangle_2::has_on_boundary(p); } bool has_on_positive_side(const CGAL::Point_2 &p) const { return RTriangle_2::has_on_positive_side(p); } bool has_on_negative_side(const CGAL::Point_2 &p) const { return RTriangle_2::has_on_negative_side(p); } bool has_on_unbounded_side(const CGAL::Point_2 &p) const { return RTriangle_2::has_on_unbounded_side(p); } bool has_on_bounded_side(const CGAL::Point_2 &p) const { return RTriangle_2::has_on_bounded_side(p); } bool is_degenerate() const { return RTriangle_2::is_degenerate(); } Bbox_2 bbox() const { return vertex(0).bbox() + vertex(1).bbox() + vertex(2).bbox(); } FT area() const { return RTriangle_2::area(); } }; #ifndef CGAL_NO_OSTREAM_INSERT_TRIANGLE_2 template < class R > std::ostream & operator<<(std::ostream &os, const Triangle_2 &t) { typedef typename R::Triangle_2_base RTriangle_2; return os << (const RTriangle_2&)t; } #endif // CGAL_NO_OSTREAM_INSERT_TRIANGLE_2 #ifndef CGAL_NO_ISTREAM_EXTRACT_TRIANGLE_2 template < class R > std::istream & operator>>(std::istream &is, Triangle_2 &t) { typedef typename R::Triangle_2_base RTriangle_2; return is >> (RTriangle_2&)t; } #endif // CGAL_NO_ISTREAM_EXTRACT_TRIANGLE_2 CGAL_END_NAMESPACE #endif // CGAL_TRIANGLE_2_H