\begin{ccRefConcept}{PolynomialTraits_d::Canonicalize} \ccDefinition This \ccc{AdaptableUnaryFunction} computes a unique representative from the set: $\{ q | \lambda * q = p\ for\ some\ \lambda \in R \}$, where $p$ is the given polynomial and $R$ the base of the polynomial ring. In particular, the computed polynomial has the same zero set as the given one. In case \ccc{PolynomialTraits::Innermost_coefficient_type} is a model of \ccc{Field}, the computed polynomial is the {\em monic} polynomial, that is the innermost leading coefficient equals one. In case \ccc{PolynomialTraits::Innermost_coefficient_type} is a model of \ccc{UniqueFactorizationDomain}, the gcd over all innermost coefficients of the computed polynomial is one. For all other cases the notion of uniqueness is up to the concrete model. \ccRefines \ccc{AdaptableUnaryFunction} \ccTypes \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d argument_type;}{} \ccOperations \ccCreationVariable{fo} \ccMethod{result_type operator()(first_argument_type p);}{ Returns the cononical representative of $p$.} %\ccHasModels \ccSeeAlso \ccRefIdfierPage{Polynomial_d}\\ \ccRefIdfierPage{PolynomialTraits_d}\\ \end{ccRefConcept}