%Subdivision surfaces \cite{cc,ds,loop,sqrt3,qts} %are the limit surface resulting from the %application of a subdivision algorithm to a control mesh. %Subdivision algorithms recursively \emph{refine} (subdivide) the %control mesh and \emph{modify} (smooth) the geometry according %to a stencil on the source mesh. %Further details on subdivisions can be found at \cite{Sub:course:2000} %and \cite{Warren:subdivision}. The OpenMesh library has %supports of Loop and $\sqrt{3}$ subdivisions \cite{Abhijit:2004:APISUB}. Subdivision algorithms \cite{Warren:subdivision, Sub:course:2000} contain two major steps: \emph{\tr} and \emph{\gm}. The \tr\ reparameterizes the control mesh into a refined mesh. The \gm\ transforms a submesh on the control mesh to a vertex on the refined mesh. The submesh (with the normalized weights) is called the \emph{stencil}. A subdivision algorithm recursively applies these two steps on the control mesh and generate the limit surfaces. %A proper combination of a \tr\ and a set of %rules of \gm\ define a valid subdivision scheme. The local configurartions of refinements employed in subdivision algoruthms are shown in Fig.\ref{fig:RefSchemes}, including Catmull-Clark subdivision (PQQ) \cite{cc}, Loop subdivision (PTQ) \cite{loop}, Doo-Sabin subdivision (DQQ) \cite{ds} and $\sqrt{3}$ subdivision \cite{sqrt3}. Subdivisions, such as Quad-Triangle subdivision \cite{qts,l-pg-03}, may employ a hybrid refinement consisting of two different refinements. \begin{figure}[htb] \centering \psfrag{PQQ}[]{\scriptsize PQQ} \psfrag{PTQ}[]{\scriptsize PTQ} \psfrag{DQQ}[]{\scriptsize DQQ} \psfrag{Sqrt3}[]{\scriptsize $\sqrt{3}$} \epsfig{file=figs/RefSchemes.eps, width=7cm} \caption{Examples of refinement schemes: primal quadrilateral quadrisection (PQQ), primal triangle quadrisection (PTQ), dual quadrilateral quadrisection (DQQ) and $\sqrt{3}$ triangulation.} \label{fig:RefSchemes} \end{figure} The \gm\ multiplies the stencils and results the vertices on the refined mesh. Examples of the correspondence between a stencil and its vertex are shown in Fig.\ref{fig:RefMap}, where Catmull-Clark subdivision has three distinct stencils and Doo-Sabin subdivision has only one stencil. \begin{figure} \centering \psfrag{A}[]{(a)} \psfrag{B}[]{(b)} \psfrag{C}[]{(c)} \psfrag{D}[]{(d)} \epsfig{file=figs/RefMap.eps, width=7cm} \caption{The stencil (weights are not shown) and its vertex in the Catmull-Clark subdivision (a-c) and Doo-Sabin subdivision (d). Catmull-Clark subdivision has three stencils: facet-stencil (a), edge-stencil (b) and vertex-stencil (c). Doo-Sabin subdivision has only corner-stencil (d).} \label{fig:RefMap} \end{figure} % templated rules: a generic framework for subdivisions \subsubsection{Generic Subdivision Solution} %\label{sec:subtempl} \input subtempl \subsubsection{Sqrt 3} % connectivity ops: specific polyhedron algorithms (sqrt3 subdivisions) %\subsection{$\sqrt{3}$-Subdivision using Euler Operators} \input sqrt3 % inc builder: specific polyhedron algorithms (qt subdivisions) %\subsection{Quad-triangle Subdivision using modifier} %\input qt