// Copyright (c) 2012 // Utrecht University (The Netherlands), // ETH Zurich (Switzerland), // INRIA Sophia-Antipolis (France), // Max-Planck-Institute Saarbruecken (Germany), // and Tel-Aviv University (Israel). All rights reserved. // // This file is part of CGAL (www.cgal.org) // // $URL$ // $Id$ // SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial // // Author(s): Efi Fogel #ifndef CGAL_DRAW_ARRANGEMENT_2_H #define CGAL_DRAW_ARRANGEMENT_2_H #include #include #include #include #include #include #include #include #include #include #include #include #include namespace CGAL { namespace draw_function_for_arrangement_2 { template class Draw_arr_tool { public: using Halfedge_const_handle=typename Arr::Halfedge_const_handle; using Vertex_const_handle=typename Arr::Vertex_const_handle; using Face_const_handle=typename Arr::Face_const_handle; using Ccb_halfedge_const_circulator=typename Arr::Ccb_halfedge_const_circulator; using Inner_ccb_const_iterator=typename Arr::Inner_ccb_const_iterator; using Outer_ccb_const_iterator=typename Arr::Outer_ccb_const_iterator; using Gt=typename Arr::Geometry_traits_2; using Point=typename Arr::Point_2; using X_monotone_curve = typename Arr::X_monotone_curve_2; Draw_arr_tool(Arr& a_aos, CGAL::Graphics_scene& a_gs, const GSOptions& a_gso): m_aos(a_aos), m_gs(a_gs), m_gso(a_gso) {} /// Add a face. void add_face(Face_const_handle face) { // std::cout << "add_face()\n"; for (Inner_ccb_const_iterator it = face->inner_ccbs_begin(); it != face->inner_ccbs_end(); ++it) { add_ccb(*it); } for (Outer_ccb_const_iterator it = face->outer_ccbs_begin(); it != face->outer_ccbs_end(); ++it) { add_ccb(*it); draw_region(*it); } } /// Add a Connected Component of the Boundary. void add_ccb(Ccb_halfedge_const_circulator circ) { // std::cout << "add_ccb()\n"; auto curr = circ; do { auto new_face = curr->twin()->face(); if (m_visited.find(new_face) != m_visited.end()) continue; m_visited[new_face] = true; add_face(new_face); } while (++curr != circ); } ///! Draw a region. void draw_region(Ccb_halfedge_const_circulator circ) { // std::cout << "draw_region()\n"; /* Check whether the traits has a member function called * approximate_2_object() and if so check whether the return type, namely * `Approximate_2` has an appropriate operator. * * C++20 supports concepts and `requires` expression; see, e.g., * https://en.cppreference.com/w/cpp/language/constraints; thus, the first * condition above can be elegantly verified as follows: * constexpr bool has_approximate_2_object = * requires(const Gt& traits) { traits.approximate_2_object(); }; * * C++17 has experimental constructs called is_detected and * is_detected_v that can be used to achieve the same goal. * * For now we use C++14 features. */ if(m_gso.colored_face(m_aos, circ->face())) { m_gs.face_begin(m_gso.face_color(m_aos, circ->face())); } else { m_gs.face_begin(); } const auto* traits = this->m_aos.geometry_traits(); auto ext = find_smallest(circ, *traits); auto curr = ext; do { // Skip halfedges that are "antenas": while (curr->face() == curr->twin()->face()) curr = curr->twin()->next(); draw_region_impl1(curr, *traits, 0); curr = curr->next(); } while (curr != ext); m_gs.face_end(); } /// Compile time dispatching #if 0 template void draw_region_impl2(Halfedge_const_handle curr, T const&, long) { draw_exact_region(curr); } template auto draw_region_impl2(Halfedge_const_handle curr, T const& approx, int) -> decltype(approx.template operator()(X_monotone_curve{}, double{}, I{}, bool{}), void()) { draw_approximate_region(curr, approx); } template void draw_region_impl1(Halfedge_const_handle curr, T const&, long) { draw_exact_region(curr); } template auto draw_region_impl1(Halfedge_const_handle curr, T const& traits, int) -> decltype(traits.approximate_2_object(), void()) { using Approximate = typename Gt::Approximate_2; draw_region_impl2(curr, traits.approximate_2_object(), 0); } #else template void draw_region_impl1(Halfedge_const_handle curr, T const& traits, int) { draw_approximate_region(curr, traits.approximate_2_object()); } #endif template void draw_region_impl1 (Halfedge_const_handle curr, Arr_geodesic_arc_on_sphere_traits_2 const& traits, int) { if(!m_gso.draw_edge(m_aos, curr)) { return; } // std::cout << "draw_region_impl1()\n"; auto approx = traits.approximate_2_object(); using Kernel = Kernel_; using Traits = Arr_geodesic_arc_on_sphere_traits_2; using Ak = typename Traits::Approximate_kernel; using Ap = typename Traits::Approximate_point_2; using Approx_point_3 = typename Ak::Point_3; std::vector polyline; double error(0.01); bool l2r = curr->direction() == ARR_LEFT_TO_RIGHT; approx(curr->curve(), error, std::back_inserter(polyline), l2r); if (polyline.empty()) return; auto it = polyline.begin(); auto x = it->dx(); auto y = it->dy(); auto z = it->dz(); auto l = std::sqrt(x*x + y*y + z*z); Approx_point_3 prev(x/l, y/l, z/l); for (++it; it != polyline.end(); ++it) { auto x = it->dx(); auto y = it->dy(); auto z = it->dz(); auto l = std::sqrt(x*x + y*y + z*z); Approx_point_3 next(x/l, y/l, z/l); if(m_gso.colored_edge(m_aos, curr)) { m_gs.add_segment(prev, next, m_gso.edge_color(m_aos, curr)); } else { m_gs.add_segment(prev, next); } prev = next; // m_gs.add_point_in_face(*prev); } } /*! Draw a region using approximate coordinates. * Call this member function only if the geometry traits is equipped with * the coordinate-approximation functionality of a curve. * This function must be inlined (e.g., a template) to enable the * compiled-time dispatching in the function `draw_region()`. */ template void draw_approximate_region(Halfedge_const_handle curr, const Approximate& approx) { // std::cout << "draw_approximate_region()\n"; std::vector polyline; double error(0.01); // TODO? (this->pixel_ratio()); bool l2r = curr->direction() == ARR_LEFT_TO_RIGHT; approx(curr->curve(), error, std::back_inserter(polyline), l2r); if (polyline.empty()) return; auto it = polyline.begin(); auto prev = it++; for (; it != polyline.end(); prev = it++) { if(m_gso.draw_edge(m_aos, curr)) { if(m_gso.colored_edge(m_aos, curr)) { m_gs.add_segment(*prev, *it, m_gso.edge_color(m_aos, curr)); } else { m_gs.add_segment(*prev, *it); } } m_gs.add_point_in_face(*prev); } } /// Draw an exact curve. template void draw_exact_curve(const XMonotoneCurve& curve) { const auto* traits = this->m_aos.geometry_traits(); auto ctr_min = traits->construct_min_vertex_2_object(); auto ctr_max = traits->construct_max_vertex_2_object(); m_gs.add_segment(ctr_min(curve), ctr_max(curve)); } /// Draw an exact region. void draw_exact_region(Halfedge_const_handle curr) { // this->add_point_in_face(curr->source()->point()); draw_exact_curve(curr->curve()); } /// Add all faces. template void add_faces(const Traits&) { for (auto it=m_aos.unbounded_faces_begin(); it!=m_aos.unbounded_faces_end(); ++it) { add_face(it); } } /// Add all faces. template void add_faces(Arr_geodesic_arc_on_sphere_traits_2 const&) { add_face(m_aos.faces_begin()); } /// Compile time dispatching #if 0 template void draw_point_impl2(const Point& p, T const&, long) { m_gs.add_point(p); } template auto draw_point_impl2(const Point& p, T const& approx, int) -> decltype(approx.operator()(p), void()) { m_gs.add_point(approx(p)); } template void draw_point_impl1(const Point& p, T const&, long) { m_gs.add_point(p); } template auto draw_point_impl1(const Point& p, T const& traits, int) -> decltype(traits.approximate_2_object(), void()) { using Approximate = typename Gt::Approximate_2; draw_point_impl2(p, traits.approximate_2_object(), true); } #else template void draw_point_impl1(const Point& p, T const& traits, int, bool colored, const CGAL::IO::Color& color) { if(colored) { m_gs.add_point(traits.approximate_2_object()(p), color); } else { m_gs.add_point(traits.approximate_2_object()(p)); } } #endif template void draw_point_impl1 (const Point& p, Arr_geodesic_arc_on_sphere_traits_2 const& traits, int, bool colored, const CGAL::IO::Color& color) { auto approx = traits.approximate_2_object(); using Traits = Arr_geodesic_arc_on_sphere_traits_2; using Ak = typename Traits::Approximate_kernel; using Approx_point_3 = typename Ak::Point_3; auto ap = approx(p); auto x = ap.dx(); auto y = ap.dy(); auto z = ap.dz(); auto l = std::sqrt(x*x + y*y + z*z); Approx_point_3 p3(x/l, y/l, z/l); if(colored) { m_gs.add_point(p3, color); } else { m_gs.add_point(p3); } } /// Draw a point. void draw_point(Vertex_const_handle vh) { const auto* traits = m_aos.geometry_traits(); if(m_gso.draw_vertex(m_aos, vh)) { if(m_gso.colored_vertex(m_aos, vh)) { draw_point_impl1(vh->point(), *traits, 0, true, m_gso.vertex_color(m_aos, vh)); } else { draw_point_impl1(vh->point(), *traits, 0, false, CGAL::IO::Color()); } // color will be unused } } template Halfedge_const_handle find_smallest(Ccb_halfedge_const_circulator circ, Arr_geodesic_arc_on_sphere_traits_2 const&) { return circ; } /*! Find the halfedge incident to the lexicographically smallest vertex * along the CCB, such that there is no other halfedge underneath. */ template Halfedge_const_handle find_smallest(Ccb_halfedge_const_circulator circ, const Traits&) { // std::cout << "find_smallest()\n"; const auto* traits = this->m_aos.geometry_traits(); auto cmp_xy = traits->compare_xy_2_object(); auto cmp_y = traits->compare_y_at_x_right_2_object(); // Find the first halfedge directed from left to right auto curr = circ; do if (curr->direction() == CGAL::ARR_LEFT_TO_RIGHT) break; while (++curr != circ); Halfedge_const_handle ext = curr; // Find the halfedge incident to the lexicographically smallest vertex, // such that there is no other halfedge underneath. do { // Discard edges not directed from left to right: if (curr->direction() != CGAL::ARR_LEFT_TO_RIGHT) continue; auto res = cmp_xy(curr->source()->point(), ext->source()->point()); // Discard the edges inciden to a point strictly larger than the point // incident to the stored extreme halfedge: if (res == LARGER) continue; // Store the edge inciden to a point strictly smaller: if (res == SMALLER) { ext = curr; continue; } // The incident points are equal; compare the halfedges themselves: if (cmp_y(curr->curve(), ext->curve(), curr->source()->point()) == SMALLER) ext = curr; } while (++curr != circ); return ext; } /// Add all elements to be drawn. void add_elements() { // std::cout << "add_elements()\n"; // std::cout << "ratio: " << this->pixel_ratio() << std::endl; m_visited.clear(); if (m_aos.is_empty()) return; if(m_gso.are_faces_enabled()) { add_faces(*(this->m_aos.geometry_traits())); } // Add edges that do not separate faces. if(m_gso.are_edges_enabled()) { for (auto it = m_aos.edges_begin(); it != m_aos.edges_end(); ++it) { if (it->face()==it->twin()->face()) { if(m_gso.draw_edge(m_aos, it)) { if(m_gso.colored_edge(m_aos, it)) { draw_curve(it->curve(), true, m_gso.edge_color(m_aos, it)); } else { draw_curve(it->curve(), false, CGAL::IO::Color()); } } } } } // Add all points if(m_gso.are_vertices_enabled()) { for (auto it = m_aos.vertices_begin(); it != m_aos.vertices_end(); ++it) { draw_point(it); } } m_visited.clear(); } /*! Draw a curve using approximate coordinates. * Call this member function only of the geometry traits is equipped with * the coordinate-aproximation functionality of a curve. * This function must be inlined (e.g., a template) to enable the * compiled-time dispatching in the function `draw_curve()`. */ template void draw_approximate_curve(const XMonotoneCurve& curve, const Approximate& approx, bool colored, const CGAL::IO::Color& c) { std::vector polyline; double error(0.01); // TODO? (this->pixel_ratio()); approx(curve, error, std::back_inserter(polyline)); if (polyline.empty()) return; auto it = polyline.begin(); auto prev = it++; for (; it != polyline.end(); prev = it++) { if(colored) { m_gs.add_segment(*prev, *it, c); } else { m_gs.add_segment(*prev, *it); } } } /*! Compile time dispatching */ #if 0 template void draw_curve_impl2(const X_monotone_curve& xcv, T const&, long) { draw_exact_curve(xcv); } template auto draw_curve_impl2(const X_monotone_curve& xcv, T const& approx, int) -> decltype(approx.template operator()(X_monotone_curve{}, double{}, I{}, bool{}), void()) { draw_approximate_curve(xcv, approx); } template void draw_curve_impl1(const X_monotone_curve& xcv, T const&, long) { draw_exact_curve(xcv); } template auto draw_curve_impl1(const X_monotone_curve& xcv, T const& traits, int) -> decltype(traits.approximate_2_object(), void()) { using Approximate = typename Gt::Approximate_2; draw_curve_impl2(xcv, traits.approximate_2_object(), 0); } #else template void draw_curve_impl1(const X_monotone_curve& xcv, T const& traits, int, bool colored, const CGAL::IO::Color& c) { draw_approximate_curve(xcv, traits.approximate_2_object(), colored, c); } #endif template void draw_curve_impl1 (const X_monotone_curve& xcv, Arr_geodesic_arc_on_sphere_traits_2 const& traits, int, bool colored, const CGAL::IO::Color& c) { auto approx = traits.approximate_2_object(); using Kernel = Kernel_; using Traits = Arr_geodesic_arc_on_sphere_traits_2; using Ak = typename Traits::Approximate_kernel; using Ap = typename Traits::Approximate_point_2; using Approx_point_3 = typename Ak::Point_3; std::vector apoints; double error(0.01); approx(xcv, error, std::back_inserter(apoints)); auto it = apoints.begin(); auto x = it->dx(); auto y = it->dy(); auto z = it->dz(); auto l = std::sqrt(x*x + y*y + z*z); Approx_point_3 prev(x/l, y/l, z/l); for (++it; it != apoints.end(); ++it) { auto x = it->dx(); auto y = it->dy(); auto z = it->dz(); auto l = std::sqrt(x*x + y*y + z*z); Approx_point_3 next(x/l, y/l, z/l); if(colored) { m_gs.add_segment(prev, next, c); } else { m_gs.add_segment(prev, next); } prev = next; } } /// Draw a curve. template void draw_curve(const XMonotoneCurve& curve, bool colored, const CGAL::IO::Color& c) { /* Check whether the traits has a member function called * approximate_2_object() and if so check whether the return type, namely * `Approximate_2` has an appropriate operator. * * C++20 supports concepts and `requires` expression; see, e.g., * https://en.cppreference.com/w/cpp/language/constraints; thus, the first * condition above can be elegantly verified as follows: * constexpr bool has_approximate_2_object = * requires(const Gt& traits) { traits.approximate_2_object(); }; * * C++17 has experimental constructs called is_detected and * is_detected_v that can be used to achieve the same goal. * * For now we use C++14 features. */ #if 0 if constexpr (std::experimental::is_detected_v) { const auto* traits = this->m_aos.geometry_traits(); auto approx = traits->approximate_2_object(); draw_approximate_curve(curve, approx); return; } draw_exact_curve(curve); #else const auto* traits = this->m_aos.geometry_traits(); draw_curve_impl1(curve, *traits, 0, colored, c); #endif } protected: Arr& m_aos; CGAL::Graphics_scene& m_gs; const GSOptions& m_gso; std::unordered_map m_visited; }; } // namespace draw_function_for_arrangement_2 #define CGAL_ARR_TYPE CGAL::Arrangement_on_surface_2 template void add_to_graphics_scene(const CGAL_ARR_TYPE& aos, CGAL::Graphics_scene& graphics_scene, const GSOptions& gso) { draw_function_for_arrangement_2::Draw_arr_tool dar(aos, graphics_scene, gso); dar.add_elements(); } template void add_to_graphics_scene(const CGAL_ARR_TYPE& aos, CGAL::Graphics_scene& graphics_scene) { CGAL::Graphics_scene_options gso; gso.colored_face=[](const CGAL_ARR_TYPE&, typename CGAL_ARR_TYPE::Face_const_handle) -> bool { return true; }; gso.face_color=[](const CGAL_ARR_TYPE&, typename CGAL_ARR_TYPE::Face_const_handle fh) -> CGAL::IO::Color { CGAL::Random random((unsigned int)(std::size_t)(&*fh)); return get_random_color(random); }; add_to_graphics_scene(aos, graphics_scene, gso); } /// Draw an arrangement on surface. template void draw(const CGAL_ARR_TYPE& aos, const GSOptions& gso, const char* title = "2D Arrangement on Surface Basic Viewer") { CGAL::Graphics_scene graphics_scene; add_to_graphics_scene(aos, graphics_scene, gso); draw_graphics_scene(graphics_scene, title); } template void draw(const CGAL_ARR_TYPE& aos, const char* title = "2D Arrangement on Surface Basic Viewer") { CGAL::Graphics_scene graphics_scene; add_to_graphics_scene(aos, graphics_scene); draw_graphics_scene(graphics_scene, title); } #undef CGAL_ARR_TYPE } // namespace CGAL #endif