// Copyright (c) 2014 INRIA Sophia-Antipolis (France) // All rights reserved. // // This file is part of CGAL (www.cgal.org). // You can redistribute it and/or modify it under the terms of the GNU // General Public License as published by the Free Software Foundation, // either version 3 of the License, or (at your option) any later version. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL: $ // $Id: $ // // // Author(s) : Clement Jamin #ifndef TANGENTIAL_COMPLEX_H #define TANGENTIAL_COMPLEX_H #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CGAL_TC_PROFILING # include #endif #include // CJTODO TEMP #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CGAL_LINKED_WITH_TBB # include # include # include #endif //#define CGAL_TC_EXPORT_NORMALS // Only for 3D surfaces (k=2, d=3) namespace CGAL { using namespace Tangential_complex_; enum Fix_inconsistencies_status { TC_FIXED = 0, TIME_LIMIT_REACHED }; class Vertex_data { public: Vertex_data(std::size_t data = std::numeric_limits::max()) : m_data(data) {} operator std::size_t() { return m_data; } operator std::size_t() const { return m_data; } private: std::size_t m_data; }; /// The class Tangential_complex represents a tangential complex template < typename Kernel, typename DimensionTag, typename Concurrency_tag = CGAL::Parallel_tag, typename Tr = Regular_triangulation < Regular_triangulation_euclidean_traits< Epick_d >, Triangulation_data_structure < typename Regular_triangulation_euclidean_traits< Epick_d >::Dimension, Triangulation_vertex >, Vertex_data >, Triangulation_full_cell > > > > > class Tangential_complex { typedef typename Kernel::FT FT; typedef typename Kernel::Point_d Point; typedef typename Kernel::Weighted_point_d Weighted_point; typedef typename Kernel::Vector_d Vector; typedef Tr Triangulation; typedef typename Triangulation::Geom_traits Tr_traits; typedef typename Triangulation::Weighted_point Tr_point; typedef typename Triangulation::Bare_point Tr_bare_point; typedef typename Triangulation::Vertex_handle Tr_vertex_handle; typedef typename Triangulation::Full_cell_handle Tr_full_cell_handle; typedef typename Tr_traits::Vector_d Tr_vector; typedef std::vector Tangent_space_basis; typedef std::vector Points; typedef std::vector Weights; #if defined(CGAL_LINKED_WITH_TBB) && defined(CGAL_TC_GLOBAL_REFRESH) typedef tbb::mutex Mutex_for_perturb; typedef Vector Translation_for_perturb; typedef std::vector > Weights_for_perturb; #else typedef Vector Translation_for_perturb; typedef std::vector Weights_for_perturb; #endif typedef std::vector Translations_for_perturb; typedef Point_cloud_data_structure Points_ds; typedef typename Points_ds::KNS_range KNS_range; typedef typename Points_ds::KNS_iterator KNS_iterator; typedef typename Points_ds::INS_range INS_range; typedef typename Points_ds::INS_iterator INS_iterator; // Store a local triangulation and a handle to its center vertex struct Tr_and_VH { public: Tr_and_VH() : m_tr(NULL) {} Tr_and_VH(int dim) : m_tr(new Triangulation(dim)) {} ~Tr_and_VH() { destroy_triangulation(); } Triangulation & construct_triangulation(int dim) { delete m_tr; m_tr = new Triangulation(dim); return tr(); } void destroy_triangulation() { delete m_tr; m_tr = NULL; } Triangulation & tr() { return *m_tr; } Triangulation const& tr() const { return *m_tr; } Tr_vertex_handle const& center_vertex() const { return m_center_vertex; } Tr_vertex_handle & center_vertex() { return m_center_vertex; } private: Triangulation* m_tr; Tr_vertex_handle m_center_vertex; }; typedef typename std::vector TS_container; typedef typename std::vector Tr_container; typedef typename std::vector Vectors; // An Incident_simplex is the list of the verter indices // except the center vertex typedef std::set Incident_simplex; typedef std::vector Star; typedef std::vector Stars_container; #ifdef CGAL_LINKED_WITH_TBB // CJTODO: test other mutexes // http://www.threadingbuildingblocks.org/docs/help/reference/synchronization/mutexes/mutex_concept.htm //typedef tbb::queuing_mutex Tr_mutex; #endif // For transform_iterator static const Tr_point &vertex_handle_to_point(Tr_vertex_handle vh) { return vh->point(); } public: typedef Tangential_complex_::Simplicial_complex Simplicial_complex; /// Constructor for a range of points template Tangential_complex(InputIterator first, InputIterator last, double sparsity, int intrinsic_dimension, #ifdef USE_ANOTHER_POINT_SET_FOR_TANGENT_SPACE_ESTIM InputIterator first_for_tse, InputIterator last_for_tse, #endif const Kernel &k = Kernel() ) : m_k(k), m_intrinsic_dimension(intrinsic_dimension), m_half_sparsity(0.5*sparsity), m_sq_half_sparsity(m_half_sparsity*m_half_sparsity), m_ambiant_dim(k.point_dimension_d_object()(*first)), m_points(first, last) # if defined(CGAL_LINKED_WITH_TBB) && defined(CGAL_TC_PERTURB_POSITION) \ && defined(CGAL_TC_GLOBAL_REFRESH) , m_p_perturb_mutexes(NULL) # endif , m_points_ds(m_points) #ifdef USE_ANOTHER_POINT_SET_FOR_TANGENT_SPACE_ESTIM , m_points_for_tse(first_for_tse, last_for_tse) , m_points_ds_for_tse(m_points_for_tse) #endif {} /// Destructor ~Tangential_complex() { #if defined(CGAL_LINKED_WITH_TBB) && defined(CGAL_TC_PERTURB_POSITION) \ && defined(CGAL_TC_GLOBAL_REFRESH) delete [] m_p_perturb_mutexes; #endif } std::size_t number_of_vertices() { return m_points.size(); } void compute_tangential_complex() { #ifdef CGAL_TC_PROFILING Wall_clock_timer t; #endif // We need to do that because we don't want the container to copy the // already-computed triangulations (while resizing) since it would // invalidate the vertex handles stored beside the triangulations m_triangulations.resize(m_points.size()); m_stars.resize(m_points.size()); #ifdef CGAL_LINKED_WITH_TBB //m_tr_mutexes.resize(m_points.size()); #endif m_tangent_spaces.resize(m_points.size()); #ifdef CGAL_TC_PERTURB_WEIGHT m_weights.resize(m_points.size(), FT(0)); #endif #ifdef CGAL_TC_PERTURB_POSITION m_translations.resize(m_points.size(), m_k.construct_vector_d_object()(m_ambiant_dim)); # if defined(CGAL_LINKED_WITH_TBB) && defined(CGAL_TC_GLOBAL_REFRESH) delete [] m_p_perturb_mutexes; m_p_perturb_mutexes = new Mutex_for_perturb[m_points.size()]; # endif #endif #ifdef CGAL_TC_PERTURB_TANGENT_SPACE m_perturb_tangent_space.resize(m_points.size(), false); #endif #ifdef CGAL_TC_EXPORT_NORMALS m_normals.resize(m_points.size(), m_k.construct_vector_d_object()(m_ambiant_dim)); #endif #ifdef CGAL_LINKED_WITH_TBB // Parallel if (boost::is_convertible::value) { tbb::parallel_for(tbb::blocked_range(0, m_points.size()), Compute_tangent_triangulation(*this) ); } // Sequential else #endif // CGAL_LINKED_WITH_TBB { for (std::size_t i = 0 ; i < m_points.size() ; ++i) compute_tangent_triangulation(i); } #ifdef CGAL_TC_PROFILING std::cerr << "Tangential complex computed in " << t.elapsed() << " seconds." << std::endl; #endif } void estimate_intrinsic_dimension() { // Kernel functors typename Kernel::Compute_coordinate_d coord = m_k.compute_coordinate_d_object(); std::vector sum_eigen_values(m_ambiant_dim, FT(0)); Points::const_iterator it_p = m_points.begin(); Points::const_iterator it_p_end = m_points.end(); // For each point p for ( ; it_p != it_p_end ; ++it_p) { const Point &p = *it_p; KNS_range kns_range = m_points_ds.query_ANN( p, NUM_POINTS_FOR_PCA, false); //******************************* PCA ************************************* // One row = one point Eigen::MatrixXd mat_points(NUM_POINTS_FOR_PCA, m_ambiant_dim); KNS_iterator nn_it = kns_range.begin(); for (int j = 0 ; j < NUM_POINTS_FOR_PCA && nn_it != kns_range.end() ; ++j, ++nn_it) { for (int i = 0 ; i < m_ambiant_dim ; ++i) mat_points(j, i) = CGAL::to_double(coord(m_points[nn_it->first], i)); } Eigen::MatrixXd centered = mat_points.rowwise() - mat_points.colwise().mean(); Eigen::MatrixXd cov = centered.adjoint() * centered; Eigen::SelfAdjointEigenSolver eig(cov); // The eigenvectors are sorted in increasing order of their corresponding // eigenvalues Tangent_space_basis ts; for (int i = 0 ; i < m_ambiant_dim ; ++i) sum_eigen_values[i] += eig.eigenvalues()[i]; //************************************************************************* } // CJTODO: replace this by an actual estimation for (FT v : sum_eigen_values) // CJTODO C++11 { std::cout << v << " "; } std::cout << "\n"; } void refresh_tangential_complex() { #ifdef CGAL_TC_PROFILING Wall_clock_timer t; #endif #ifdef CGAL_LINKED_WITH_TBB // Parallel if (boost::is_convertible::value) { tbb::parallel_for(tbb::blocked_range(0, m_points.size()), Compute_tangent_triangulation(*this, true) //tangent_spaces_are_already_computed ); } // Sequential else #endif // CGAL_LINKED_WITH_TBB { for (std::size_t i = 0 ; i < m_points.size() ; ++i) { compute_tangent_triangulation(i, true); // tangent_spaces_are_already_computed } } #ifdef CGAL_TC_PROFILING std::cerr << "Tangential complex refreshed in " << t.elapsed() << " seconds." << std::endl; #endif } // time_limit in seconds: 0 = no fix to do, < 0 = no time limit Fix_inconsistencies_status fix_inconsistencies( unsigned int &num_steps, std::size_t &initial_num_inconsistent_local_tr, std::size_t &best_num_inconsistent_local_tr, std::size_t &final_num_inconsistent_local_tr, double time_limit = -1.) { if (time_limit == 0.) return TIME_LIMIT_REACHED; Wall_clock_timer t; typename Kernel::Point_drop_weight_d drop_w = m_k.point_drop_weight_d_object(); #ifdef CGAL_TC_VERBOSE std::cerr << "Fixing inconsistencies..." << std::endl; #endif #ifdef CGAL_TC_SHOW_DETAILED_STATS_FOR_INCONSISTENCIES std::pair stats_before = number_of_inconsistent_simplices(false); # ifdef CGAL_TC_VERBOSE std::cerr << "Initial number of inconsistencies: " << stats_before.second << std::endl; # endif if (stats_before.second == 0) { # ifdef CGAL_TC_VERBOSE std::cerr << "Nothing to fix." << std::endl; # endif return 0; } #endif // CGAL_TC_SHOW_DETAILED_STATS_FOR_INCONSISTENCIES bool done = false; best_num_inconsistent_local_tr = m_triangulations.size(); num_steps = 0; while (!done) { std::size_t num_inconsistent_local_tr = 0; #ifdef CGAL_TC_PROFILING Wall_clock_timer t_fix_step; #endif // Parallel #if defined(CGAL_LINKED_WITH_TBB) && defined(CGAL_TC_GLOBAL_REFRESH) if (boost::is_convertible::value) { tbb::combinable num_inconsistencies; tbb::parallel_for( tbb::blocked_range(0, m_triangulations.size()), Try_to_solve_inconsistencies_in_a_local_triangulation( *this, num_inconsistencies) ); num_inconsistent_local_tr = num_inconsistencies.combine(std::plus()); } // Sequential else #endif // CGAL_LINKED_WITH_TBB { for (std::size_t i = 0 ; i < m_triangulations.size() ; ++i) { num_inconsistent_local_tr += (try_to_solve_inconsistencies_in_a_local_triangulation(i) ? 1 : 0); } } #ifdef CGAL_TC_PROFILING std::cerr << "Attempt to fix inconsistencies: " << t_fix_step.elapsed() << " seconds." << std::endl; #endif #ifdef CGAL_TC_GLOBAL_REFRESH refresh_tangential_complex(); #endif #ifdef CGAL_TC_SHOW_DETAILED_STATS_FOR_INCONSISTENCIES std::pair stats_after = number_of_inconsistent_simplices(false); std::cerr << std::endl << "==========================================================" << std::endl << "Inconsistencies (detailed stats):\n" << " * Number of vertices: " << m_points.size() << std::endl << std::endl << " * BEFORE fix_inconsistencies:" << std::endl << " - Total number of simplices in stars (incl. duplicates): " << stats_before.first << std::endl << " - Num inconsistent simplices in stars (incl. duplicates): " << stats_before.second << " (" << 100. * stats_before.second / stats_before.first << "%)" << std::endl << " * Num inconsistent local triangulations: " << num_inconsistent_local_tr << " (" << 100. * num_inconsistent_local_tr / m_points.size() << "%)" << std::endl << std::endl << " * AFTER fix_inconsistencies:" << std::endl << " - Total number of simplices in stars (incl. duplicates): " << stats_after.first << std::endl << " - Num inconsistent simplices in stars (incl. duplicates): " << stats_after.second << std::endl << " - Percentage of inconsistencies: " << 100. * stats_after.second / stats_after.first << "%" << std::endl << "==========================================================" << std::endl; stats_before = stats_after; #else // CGAL_TC_SHOW_DETAILED_STATS_FOR_INCONSISTENCIES # ifdef CGAL_TC_VERBOSE std::cerr << std::endl << "==========================================================" << std::endl << "fix_inconsistencies():\n" << " * " << m_points.size() << " vertices" << std::endl << " * " << num_inconsistent_local_tr << " (" << 100. * num_inconsistent_local_tr / m_points.size() << "%)" << " inconsistent triangulations encountered" << std::endl << "==========================================================" << std::endl; # endif #endif // CGAL_TC_SHOW_DETAILED_STATS_FOR_INCONSISTENCIES if (num_steps == 0) initial_num_inconsistent_local_tr = num_inconsistent_local_tr; if (num_inconsistent_local_tr < best_num_inconsistent_local_tr) best_num_inconsistent_local_tr = num_inconsistent_local_tr; final_num_inconsistent_local_tr = num_inconsistent_local_tr; ++num_steps; done = (num_inconsistent_local_tr == 0); if (!done && time_limit > 0. && t.elapsed() > time_limit) { #ifdef CGAL_TC_VERBOSE std::cerr << "Time limit reached." << std::endl; #endif return TIME_LIMIT_REACHED; } } return TC_FIXED; } // Return a pair std::pair number_of_inconsistent_simplices( #ifdef CGAL_TC_VERBOSE bool verbose = true #else bool verbose = false #endif ) { std::size_t num_simplices = 0; std::size_t num_inconsistent_simplices = 0; typename Tr_container::const_iterator it_tr = m_triangulations.begin(); typename Tr_container::const_iterator it_tr_end = m_triangulations.end(); // For each triangulation for (std::size_t idx = 0 ; it_tr != it_tr_end ; ++it_tr, ++idx) { Triangulation const& tr = it_tr->tr(); Tr_vertex_handle center_vh = it_tr->center_vertex(); // For each cell Star::const_iterator it_inc_simplex = m_stars[idx].begin(); Star::const_iterator it_inc_simplex_end = m_stars[idx].end(); for ( ; it_inc_simplex != it_inc_simplex_end ; ++it_inc_simplex) { // Don't export infinite cells if (*it_inc_simplex->rbegin() == std::numeric_limits::max()) continue; std::set c = *it_inc_simplex; c.insert(idx); // Add the missing index if (!is_simplex_consistent(c)) ++num_inconsistent_simplices; ++num_simplices; } } if (verbose) { std::cerr << std::endl << "==========================================================" << std::endl << "Inconsistencies:\n" << " * Number of vertices: " << m_points.size() << std::endl << " * Total number of simplices in stars (incl. duplicates): " << num_simplices << std::endl << " * Number of inconsistent simplices in stars (incl. duplicates): " << num_inconsistent_simplices << std::endl << " * Percentage of inconsistencies: " << 100 * num_inconsistent_simplices / num_simplices << "%" << std::endl << "==========================================================" << std::endl; } return std::make_pair(num_simplices, num_inconsistent_simplices); } // Return the max dimension of the simplices int export_TC(Simplicial_complex &complex, bool export_infinite_simplices = false) { int max_dim = -1; typename Tr_container::const_iterator it_tr = m_triangulations.begin(); typename Tr_container::const_iterator it_tr_end = m_triangulations.end(); // For each triangulation for (std::size_t idx = 0 ; it_tr != it_tr_end ; ++it_tr, ++idx) { Triangulation const& tr = it_tr->tr(); // For each cell of the star Star::const_iterator it_inc_simplex = m_stars[idx].begin(); Star::const_iterator it_inc_simplex_end = m_stars[idx].end(); for ( ; it_inc_simplex != it_inc_simplex_end ; ++it_inc_simplex) { // Don't export infinite cells if (!export_infinite_simplices && *it_inc_simplex->rbegin() == std::numeric_limits::max()) continue; std::set c = *it_inc_simplex; if (static_cast(c.size()) > max_dim) max_dim = static_cast(c.size()); // Add the missing center vertex c.insert(idx); complex.add_simplex(c); } } return max_dim; } void check_and_solve_inconsistencies_by_adding_higher_dim_simplices() { // CJTODO: parallel_for??? for (std::size_t idx = 0 ; idx < m_triangulations.size() ; ++idx) { bool inconsistencies_found; do { Star::const_iterator it_inc_simplex = m_stars[idx].begin(); Star::const_iterator it_inc_simplex_end = m_stars[idx].end(); for ( ; it_inc_simplex != it_inc_simplex_end ; ++it_inc_simplex) { inconsistencies_found = check_and_solve_inconsistencies_by_adding_higher_dim_simplices( idx, *it_inc_simplex); // m_stars[idx] has been modified, let's start again // CJTODO: optimize? if (inconsistencies_found) break; } } while (inconsistencies_found); } // CJTODO TEMP std::pair stats_after = number_of_inconsistent_simplices(false); std::cerr << "AFTER check_and_solve_inconsistencies_by_adding_higher_dim_simplices():\n" << " - Total number of simplices in stars (incl. duplicates): " << stats_after.first << std::endl << " - Num inconsistent simplices in stars (incl. duplicates): " << stats_after.second << std::endl << " - Percentage of inconsistencies: " << 100. * stats_after.second / stats_after.first << "%" << std::endl; } std::ostream &export_to_off( const Simplicial_complex &complex, std::ostream & os, std::set > const *p_additional_simpl_to_color = NULL) { return export_to_off(os, false, p_additional_simpl_to_color, &complex); } std::ostream &export_to_off( std::ostream & os, bool color_inconsistencies = false, std::set > const *p_additional_simpl_to_color = NULL, const Simplicial_complex *p_complex = NULL) { if (m_points.empty()) return os; const int ambient_dim = m_k.point_dimension_d_object()(*m_points.begin()); if (ambient_dim < 2) { std::cerr << "Error: export_to_off => ambient dimension should be >= 2." << std::endl; os << "Error: export_to_off => ambient dimension should be >= 2." << std::endl; return os; } if (ambient_dim > 3) { std::cerr << "Warning: export_to_off => ambient dimension should be " "<= 3. Only the first 3 coordinates will be exported." << std::endl; } if (m_intrinsic_dimension < 1 || m_intrinsic_dimension > 3) { std::cerr << "Error: export_to_off => intrinsic dimension should be " "between 1 and 3." << std::endl; os << "Error: export_to_off => intrinsic dimension should be " "between 1 and 3." << std::endl; return os; } std::stringstream output; std::size_t num_simplices, num_vertices; export_vertices_to_off(output, num_vertices); if (p_complex) { export_simplices_to_off( *p_complex, output, num_simplices, p_additional_simpl_to_color); } else { export_simplices_to_off( output, num_simplices, color_inconsistencies, p_additional_simpl_to_color); } #ifdef CGAL_TC_EXPORT_NORMALS os << "N"; #endif os << "OFF \n" << num_vertices << " " << num_simplices << " " << "0 \n" << output.str(); return os; } bool check_if_all_simplices_are_in_the_ambient_delaunay( const Simplicial_complex *p_complex = NULL, bool check_for_any_dimension_simplices = true, std::set > * incorrect_simplices = NULL) { typedef Simplicial_complex::Simplex Simplex; typedef Simplicial_complex::Simplex_range Simplex_range; if (m_points.empty()) return true; const int ambient_dim = m_k.point_dimension_d_object()(*m_points.begin()); typedef Regular_triangulation_euclidean_traits RT_Traits; typedef Regular_triangulation< RT_Traits, Triangulation_data_structure< typename RT_Traits::Dimension, Triangulation_vertex > > RT; typedef typename RT::Vertex_handle RT_VH; typedef typename RT::Finite_full_cell_const_iterator FFC_it; //------------------------------------------------------------------------- // Build the ambient Delaunay triangulation // Then save its simplices into "amb_dt_simplices" //------------------------------------------------------------------------- RT ambient_dt(ambient_dim); for (std::size_t i=0; idata() = i; } std::set amb_dt_simplices; for (FFC_it cit = ambient_dt.finite_full_cells_begin() ; cit != ambient_dt.finite_full_cells_end() ; ++cit ) { int lowest_dim = (check_for_any_dimension_simplices ? 1 : m_intrinsic_dimension); int highest_dim = (check_for_any_dimension_simplices ? ambient_dim : m_intrinsic_dimension); for (int dim = lowest_dim ; dim <= highest_dim ; ++dim) { CGAL::Combination_enumerator combi( dim + 1, 0, ambient_dim + 1); for ( ; !combi.finished() ; ++combi) { Simplex simplex; for (int i = 0 ; i < dim + 1 ; ++i) simplex.insert(cit->vertex(combi[i])->data()); amb_dt_simplices.insert(simplex); } } } //------------------------------------------------------------------------- // If p_complex is NULL, parse the TC and // save its simplices into "stars_simplices" //------------------------------------------------------------------------- Simplex_range const *p_simplices; if (!p_complex) { Simplex_range stars_simplices; typename Tr_container::const_iterator it_tr = m_triangulations.begin(); typename Tr_container::const_iterator it_tr_end = m_triangulations.end(); // For each triangulation for ( ; it_tr != it_tr_end ; ++it_tr) { Triangulation const& tr = it_tr->tr(); Tr_vertex_handle center_vh = it_tr->center_vertex(); std::vector incident_cells; tr.incident_full_cells(center_vh, std::back_inserter(incident_cells)); typename std::vector::const_iterator it_c = incident_cells.begin(); typename std::vector::const_iterator it_c_end = incident_cells.end(); // For each cell for ( ; it_c != it_c_end ; ++it_c) { if (tr.is_infinite(*it_c)) { std::cerr << "Warning: infinite cell in star" << std::endl; continue; } Simplex simplex; for (int i = 0 ; i < tr.current_dimension() + 1 ; ++i) simplex.insert((*it_c)->vertex(i)->data()); stars_simplices.insert(simplex); } } p_simplices = &stars_simplices; } else { p_simplices = &p_complex->simplex_range(); } //------------------------------------------------------------------------- // Check if simplices of "*p_complex" are all in "amb_dt_simplices" //------------------------------------------------------------------------- std::set diff; if (!incorrect_simplices) incorrect_simplices = &diff; set_difference(p_simplices->begin(), p_simplices->end(), amb_dt_simplices.begin(), amb_dt_simplices.end(), std::inserter(*incorrect_simplices, incorrect_simplices->begin()) ); if (!incorrect_simplices->empty()) { std::cerr << "ERROR check_if_all_simplices_are_in_the_ambient_delaunay:" << std::endl << " Number of simplices in ambient RT: " << amb_dt_simplices.size() << std::endl << " Number of unique simplices in TC stars: " << p_simplices->size() << std::endl << " Number of wrong simplices: " << incorrect_simplices->size() << std::endl; return false; } else { #ifdef CGAL_TC_VERBOSE std::cerr << "SUCCESS check_if_all_simplices_are_in_the_ambient_delaunay:" << std::endl << " Number of simplices in ambient RT: " << amb_dt_simplices.size() << std::endl << " Number of unique simplices in TC stars: " << p_simplices->size() << std::endl << " Number of wrong simplices: " << incorrect_simplices->size() << std::endl; #endif return true; } } private: class Compare_distance_to_ref_point { public: Compare_distance_to_ref_point(Point const& ref, Kernel const& k) : m_ref(ref), m_k(k) {} bool operator()(Point const& p1, Point const& p2) { typename Kernel::Squared_distance_d sqdist = m_k.squared_distance_d_object(); return sqdist(p1, m_ref) < sqdist(p2, m_ref); } private: Point const& m_ref; Kernel const& m_k; }; #ifdef CGAL_LINKED_WITH_TBB // Functor for compute_tangential_complex function class Compute_tangent_triangulation { Tangential_complex & m_tc; bool m_tangent_spaces_are_already_computed; public: // Constructor Compute_tangent_triangulation( Tangential_complex &tc, bool tangent_spaces_are_already_computed = false) : m_tc(tc), m_tangent_spaces_are_already_computed(tangent_spaces_are_already_computed) {} // Constructor Compute_tangent_triangulation(const Compute_tangent_triangulation &ctt) : m_tc(ctt.m_tc), m_tangent_spaces_are_already_computed( ctt.m_tangent_spaces_are_already_computed) {} // operator() void operator()( const tbb::blocked_range& r ) const { for( size_t i = r.begin() ; i != r.end() ; ++i) { m_tc.compute_tangent_triangulation( i, m_tangent_spaces_are_already_computed); } } }; #endif // CGAL_LINKED_WITH_TBB void compute_tangent_triangulation( std::size_t i, bool tangent_spaces_are_already_computed = false, bool verbose = false) { if (verbose) std::cerr << "** Computing tangent tri #" << i << " **" << std::endl; //std::cerr << "***********************************************" << std::endl; Triangulation &local_tr = m_triangulations[i].construct_triangulation(m_intrinsic_dimension); const Tr_traits &local_tr_traits = local_tr.geom_traits(); Tr_vertex_handle ¢er_vertex = m_triangulations[i].center_vertex(); // Kernel functor & objects typename Kernel::Squared_distance_d k_sqdist = m_k.squared_distance_d_object(); // Triangulation's traits functor & objects typename Tr_traits::Point_weight_d point_weight = local_tr_traits.point_weight_d_object(); typename Tr_traits::Power_center_d power_center = local_tr_traits.power_center_d_object(); // No need to lock the mutex here since this will not be called while // other threads are perturbing the positions const Point center_pt = compute_perturbed_point(i); // Estimate the tangent space if (!tangent_spaces_are_already_computed) { #ifdef CGAL_TC_EXPORT_NORMALS m_tangent_spaces[i] = compute_tangent_space(center_pt, &m_normals[i]); #else m_tangent_spaces[i] = compute_tangent_space(center_pt); #endif } #ifdef CGAL_TC_PERTURB_TANGENT_SPACE else if (m_perturb_tangent_space[i]) { #ifdef CGAL_TC_EXPORT_NORMALS m_tangent_spaces[i] = compute_tangent_space(center_pt,&m_normals[i],true); #else m_tangent_spaces[i] = compute_tangent_space(center_pt, true); #endif m_perturb_tangent_space[i] = false; } #endif //*************************************************** // Build a minimal triangulation in the tangent space // (we only need the star of p) //*************************************************** // Insert p Tr_point wp = local_tr_traits.construct_weighted_point_d_object()( local_tr_traits.construct_point_d_object()(m_intrinsic_dimension, ORIGIN), #ifdef CGAL_TC_PERTURB_WEIGHT m_weights[i] #else 0 #endif ); center_vertex = local_tr.insert(wp); center_vertex->data() = i; if (verbose) std::cerr << "* Inserted point #" << i << std::endl; //const int NUM_NEIGHBORS = 150; //KNS_range ins_range = m_points_ds.query_ANN(center_pt, NUM_NEIGHBORS); INS_range ins_range = m_points_ds.query_incremental_ANN(center_pt); // While building the local triangulation, we keep the radius // of the sphere "star sphere" centered at "center_vertex" // and which contains all the // circumspheres of the star of "center_vertex" boost::optional squared_star_sphere_radius_plus_margin; // Insert points until we find a point which is outside "star shere" for (INS_iterator nn_it = ins_range.begin() ; nn_it != ins_range.end() ; ++nn_it) { std::size_t neighbor_point_idx = nn_it->first; // ith point = p, which is already inserted if (neighbor_point_idx != i) { // No need to lock the Mutex_for_perturb here since this will not be // called while other threads are perturbing the positions Point neighbor_pt; FT neighbor_weight; compute_perturbed_weighted_point( neighbor_point_idx, neighbor_pt, neighbor_weight); // "4*m_sq_half_sparsity" because both points can be perturbed if (squared_star_sphere_radius_plus_margin && k_sqdist(center_pt, neighbor_pt) > *squared_star_sphere_radius_plus_margin) break; Tr_point proj_pt = project_point_and_compute_weight( neighbor_pt, neighbor_weight, center_pt, m_tangent_spaces[i], local_tr_traits); Tr_vertex_handle vh = local_tr.insert_if_in_star(proj_pt, center_vertex); //Tr_vertex_handle vh = local_tr.insert(proj_pt); if (vh != Tr_vertex_handle()) { if (verbose) std::cerr << "* Inserted point #" << neighbor_point_idx << std::endl; vh->data() = neighbor_point_idx; // Let's recompute squared_star_sphere_radius_plus_margin if (local_tr.current_dimension() >= m_intrinsic_dimension) { squared_star_sphere_radius_plus_margin = boost::none; // Get the incident cells and look for the biggest circumsphere std::vector incident_cells; local_tr.incident_full_cells( center_vertex, std::back_inserter(incident_cells)); for (typename std::vector::iterator cit = incident_cells.begin(); cit != incident_cells.end(); ++cit) { Tr_full_cell_handle cell = *cit; if (local_tr.is_infinite(cell)) { squared_star_sphere_radius_plus_margin = boost::none; break; } else { Tr_point c = power_center( boost::make_transform_iterator( cell->vertices_begin(), vertex_handle_to_point), boost::make_transform_iterator( cell->vertices_end(), vertex_handle_to_point)); FT sq_power_sphere_diam = 4*point_weight(c); if (!squared_star_sphere_radius_plus_margin || sq_power_sphere_diam > *squared_star_sphere_radius_plus_margin) { squared_star_sphere_radius_plus_margin = sq_power_sphere_diam; } } } // Let's add the margin, now // The value depends on whether we perturb weight or position if (squared_star_sphere_radius_plus_margin) { #ifdef CGAL_TC_PERTURB_WEIGHT squared_star_sphere_radius_plus_margin = *squared_star_sphere_radius_plus_margin + 4*m_sq_half_sparsity; #else squared_star_sphere_radius_plus_margin = CGAL::square( CGAL::sqrt(*squared_star_sphere_radius_plus_margin) + 2*m_half_sparsity); #endif } } } } } //*************************************************** // Update the associated star (in m_stars) //*************************************************** Star &star = m_stars[i]; star.clear(); int cur_dim_plus_1 = local_tr.current_dimension() + 1; std::vector incident_cells; local_tr.incident_full_cells( center_vertex, std::back_inserter(incident_cells)); typename std::vector::const_iterator it_c = incident_cells.begin(); typename std::vector::const_iterator it_c_end= incident_cells.end(); // For each cell for ( ; it_c != it_c_end ; ++it_c) { // Will contain all indices except center_vertex Incident_simplex incident_simplex; for (int j = 0 ; j < cur_dim_plus_1 ; ++j) { std::size_t index = (*it_c)->vertex(j)->data(); if (index != i) incident_simplex.insert(index); } star.push_back(incident_simplex); } // CJTODO DEBUG //std::cerr << "\nChecking topology and geometry..." // << (local_tr.is_valid(true) ? "OK.\n" : "Error.\n"); // DEBUG: output the local mesh into an OFF file //std::stringstream sstr; //sstr << "data/local_tri_" << i << ".off"; //std::ofstream off_stream_tr(sstr.str()); //CGAL::export_triangulation_to_off(off_stream_tr, local_tr); } Tangent_space_basis compute_tangent_space(const Point &p #ifdef CGAL_TC_EXPORT_NORMALS , Vector *p_normal #endif #ifdef CGAL_TC_PERTURB_TANGENT_SPACE , bool perturb = false #endif ) const { //******************************* PCA ************************************* // Kernel functors typename Kernel::Construct_vector_d constr_vec = m_k.construct_vector_d_object(); typename Kernel::Compute_coordinate_d coord = m_k.compute_coordinate_d_object(); typename Kernel::Squared_length_d sqlen = m_k.squared_length_d_object(); typename Kernel::Scaled_vector_d scaled_vec = m_k.scaled_vector_d_object(); typename Kernel::Scalar_product_d inner_pdct = m_k.scalar_product_d_object(); typename Kernel::Difference_of_vectors_d diff_vec = m_k.difference_of_vectors_d_object(); //typename Kernel::Translated_point_d transl = // m_k.translated_point_d_object(); #ifdef USE_ANOTHER_POINT_SET_FOR_TANGENT_SPACE_ESTIM KNS_range kns_range = m_points_ds_for_tse.query_ANN( p, NUM_POINTS_FOR_PCA, false); const Points &points_for_pca = m_points_for_tse; #else KNS_range kns_range = m_points_ds.query_ANN(p, NUM_POINTS_FOR_PCA, false); const Points &points_for_pca = m_points; #endif // One row = one point Eigen::MatrixXd mat_points(NUM_POINTS_FOR_PCA, m_ambiant_dim); KNS_iterator nn_it = kns_range.begin(); for (int j = 0 ; j < NUM_POINTS_FOR_PCA && nn_it != kns_range.end() ; ++j, ++nn_it) { for (int i = 0 ; i < m_ambiant_dim ; ++i) { //const Point p = transl( // m_points[nn_it->first], m_translations[nn_it->first]); mat_points(j, i) = CGAL::to_double(coord(m_points[nn_it->first], i)); #ifdef CGAL_TC_PERTURB_TANGENT_SPACE if (perturb) mat_points(j, i) += m_random_generator.get_double(-0.3, 0.3); #endif } } Eigen::MatrixXd centered = mat_points.rowwise() - mat_points.colwise().mean(); Eigen::MatrixXd cov = centered.adjoint() * centered; Eigen::SelfAdjointEigenSolver eig(cov); // The eigenvectors are sorted in increasing order of their corresponding // eigenvalues Tangent_space_basis ts; for (int i = m_ambiant_dim - 1 ; i >= m_ambiant_dim - m_intrinsic_dimension ; --i) { ts.push_back(constr_vec( m_ambiant_dim, eig.eigenvectors().col(i).data(), eig.eigenvectors().col(i).data() + m_ambiant_dim)); } #ifdef CGAL_TC_EXPORT_NORMALS *p_normal = constr_vec( m_ambiant_dim, eig.eigenvectors().col(m_ambiant_dim - m_intrinsic_dimension - 1).data(), eig.eigenvectors().col(m_ambiant_dim - m_intrinsic_dimension - 1).data() + m_ambiant_dim); #endif //************************************************************************* //Vector n = m_k.point_to_vector_d_object()(p); //n = scaled_vec(n, FT(1)/sqrt(sqlen(n))); //std::cerr << "IP = " << inner_pdct(n, ts[0]) << " & " << inner_pdct(n, ts[1]) << std::endl; return compute_gram_schmidt_basis(ts, m_k); // CJTODO: this is only for a sphere in R^3 /*double tt1[3] = {-p[1] - p[2], p[0], p[0]}; double tt2[3] = {p[1] * tt1[2] - p[2] * tt1[1], p[2] * tt1[0] - p[0] * tt1[2], p[0] * tt1[1] - p[1] * tt1[0]}; Vector t1(3, &tt1[0], &tt1[3]); Vector t2(3, &tt2[0], &tt2[3]); // Normalize t1 and t2 typename Kernel::Squared_length_d sqlen = m_k.squared_length_d_object(); typename Kernel::Scaled_vector_d scaled_vec = m_k.scaled_vector_d_object(); Tangent_space_basis ts; ts.reserve(m_intrinsic_dimension); ts.push_back(scaled_vec(t1, FT(1)/CGAL::sqrt(sqlen(t1)))); ts.push_back(scaled_vec(t2, FT(1)/CGAL::sqrt(sqlen(t2)))); return ts;*/ /* // Alternative code (to be used later) //Vector n = m_k.point_to_vector_d_object()(p); //n = scaled_vec(n, FT(1)/sqrt(sqlen(n))); //Vector t1(12., 15., 65.); //Vector t2(32., 5., 85.); //Tangent_space_basis ts; //ts.reserve(m_intrinsic_dimension); //ts.push_back(diff_vec(t1, scaled_vec(n, inner_pdct(t1, n)))); //ts.push_back(diff_vec(t2, scaled_vec(n, inner_pdct(t2, n)))); //return compute_gram_schmidt_basis(ts, m_k); */ } Point compute_perturbed_point(std::size_t pt_idx) { #ifdef CGAL_TC_PERTURB_POSITION return m_k.translated_point_d_object()( m_points[pt_idx], m_translations[pt_idx]); #else return m_points[pt_idx]; #endif } void compute_perturbed_weighted_point(std::size_t pt_idx, Point &p, FT &w) { #ifdef CGAL_TC_PERTURB_POSITION p = m_k.translated_point_d_object()( m_points[pt_idx], m_translations[pt_idx]); #else p = m_points[pt_idx]; #endif #ifdef CGAL_TC_PERTURB_WEIGHT w = m_weights[pt_idx]; #else w = 0; #endif } Weighted_point compute_perturbed_weighted_point(std::size_t pt_idx) { typename Kernel::Construct_weighted_point_d k_constr_wp = m_k.construct_weighted_point_d_object(); Weighted_point wp = k_constr_wp( #ifdef CGAL_TC_PERTURB_POSITION m_k.translated_point_d_object()(m_points[pt_idx], m_translations[pt_idx]), #else m_points[pt_idx], #endif #ifdef CGAL_TC_PERTURB_WEIGHT m_weights[pt_idx]); #else 0); #endif return wp; } Point unproject_point(const Tr_point &p, const Point &origin, const Tangent_space_basis &tsb, const Tr_traits &tr_traits) { typename Kernel::Translated_point_d k_transl = m_k.translated_point_d_object(); typename Kernel::Scaled_vector_d k_scaled_vec = m_k.scaled_vector_d_object(); typename Tr_traits::Compute_coordinate_d coord = tr_traits.compute_coordinate_d_object(); Point global_point = origin; for (int i = 0 ; i < m_intrinsic_dimension ; ++i) { global_point = k_transl( global_point, k_scaled_vec(tsb[i], coord(p, i))); } return global_point; } // Project the point in the tangent space // The weight will be the squared distance between p and the projection of p Tr_bare_point project_point(const Point &p, const Point &origin, const Tangent_space_basis &ts) const { typename Kernel::Scalar_product_d inner_pdct = m_k.scalar_product_d_object(); typename Kernel::Difference_of_points_d diff_points = m_k.difference_of_points_d_object(); std::vector coords; // Ambiant-space coords of the projected point coords.reserve(m_intrinsic_dimension); for (std::size_t i = 0 ; i < m_intrinsic_dimension ; ++i) { // Compute the inner product p * ts[i] Vector v = diff_points(p, origin); FT coord = inner_pdct(v, ts[i]); coords.push_back(coord); } return Tr_bare_point(m_intrinsic_dimension, coords.begin(), coords.end()); } // Project the point in the tangent space // The weight will be the squared distance between p and the projection of p Tr_point project_point_and_compute_weight( const Weighted_point &wp, const Point &origin, const Tangent_space_basis &ts, const Tr_traits &tr_traits) const { typename Kernel::Point_drop_weight_d k_drop_w = m_k.point_drop_weight_d_object(); typename Kernel::Point_weight_d k_point_weight = m_k.point_weight_d_object(); return project_point_and_compute_weight( k_drop_w(wp), k_point_weight(wp), origin, ts, tr_traits); } Tr_point project_point_and_compute_weight( const Point &p, FT w, const Point &origin, const Tangent_space_basis &ts, const Tr_traits &tr_traits) const { const int point_dim = m_k.point_dimension_d_object()(p); typename Kernel::Scalar_product_d inner_pdct = m_k.scalar_product_d_object(); typename Kernel::Difference_of_points_d diff_points = m_k.difference_of_points_d_object(); typename Kernel::Construct_cartesian_const_iterator_d ccci = m_k.construct_cartesian_const_iterator_d_object(); Vector v = diff_points(p, origin); std::vector coords; // Ambiant-space coords of the projected point std::vector p_proj(ccci(origin), ccci(origin, 0)); coords.reserve(m_intrinsic_dimension); for (std::size_t i = 0 ; i < m_intrinsic_dimension ; ++i) { // Compute the inner product p * ts[i] FT coord = inner_pdct(v, ts[i]); coords.push_back(coord); // p_proj += coord * v; for (int j = 0 ; j < point_dim ; ++j) p_proj[j] += coord * ts[i][j]; } Point projected_pt(point_dim, p_proj.begin(), p_proj.end()); return tr_traits.construct_weighted_point_d_object() ( tr_traits.construct_point_d_object()( m_intrinsic_dimension, coords.begin(), coords.end()), w - m_k.squared_distance_d_object()(p, projected_pt) ); } // A simplex here is a local tri's full cell handle bool is_simplex_consistent(Tr_full_cell_handle fch, int cur_dim) { std::set c; for (int i = 0 ; i < cur_dim + 1 ; ++i) { std::size_t data = fch->vertex(i)->data(); c.insert(data); } return is_simplex_consistent(c); } // A simplex here is a list of point indices bool is_simplex_consistent(std::set const& simplex) { int cur_dim_plus_1 = static_cast(simplex.size()); // Check if the simplex is in the stars of all its vertices std::set::const_iterator it_point_idx = simplex.begin(); // For each point p of the simplex, we parse the incidents cells of p // and we check if "simplex" is among them for ( ; it_point_idx != simplex.end() ; ++it_point_idx) { std::size_t point_idx = *it_point_idx; // Don't check infinite simplices if (point_idx == std::numeric_limits::max()) continue; Star const& star = m_stars[point_idx]; // What we're looking for is "simplex" \ point_idx Incident_simplex ic_to_find = simplex; ic_to_find.erase(point_idx); // For each cell if (std::find(star.begin(), star.end(), ic_to_find) == star.end()) return false; } return true; } #ifdef CGAL_LINKED_WITH_TBB // Functor for try_to_solve_inconsistencies_in_a_local_triangulation function class Try_to_solve_inconsistencies_in_a_local_triangulation { Tangential_complex & m_tc; tbb::combinable &m_num_inconsistencies; public: // Constructor Try_to_solve_inconsistencies_in_a_local_triangulation( Tangential_complex &tc, tbb::combinable &num_inconsistencies) : m_tc(tc), m_num_inconsistencies(num_inconsistencies) {} // Constructor Try_to_solve_inconsistencies_in_a_local_triangulation( const Compute_tangent_triangulation &ctt) : m_tc(ctt.m_tc), m_num_inconsistencies(ctt.m_num_inc) {} // operator() void operator()( const tbb::blocked_range& r ) const { for( size_t i = r.begin() ; i != r.end() ; ++i) { m_num_inconsistencies.local() += m_tc.try_to_solve_inconsistencies_in_a_local_triangulation(i); } } }; #endif // CGAL_LINKED_WITH_TBB void perturb(std::size_t point_idx) { // Perturb the weight? #ifdef CGAL_TC_PERTURB_WEIGHT m_weights[point_idx] = m_random_generator.get_double(0., m_sq_half_sparsity); #endif #ifdef CGAL_TC_PERTURB_TANGENT_SPACE m_perturb_tangent_space[point_idx] = true; #endif // Perturb the position? #ifdef CGAL_TC_PERTURB_POSITION # ifdef CGAL_TC_PERTURB_POSITION_GLOBAL typename Kernel::Point_to_vector_d k_pt_to_vec = m_k.point_to_vector_d_object(); CGAL::Random_points_on_sphere_d tr_point_on_sphere_generator(m_ambiant_dim, 1); // Parallel # if defined(CGAL_LINKED_WITH_TBB) && defined(CGAL_TC_GLOBAL_REFRESH) Vector transl = k_scaled_vec(k_pt_to_vec( *tr_point_on_sphere_generator++), m_half_sparsity); m_p_perturb_mutexes[point_idx].lock(); m_translations[point_idx] = transl; m_p_perturb_mutexes[point_idx].unlock(); // Sequential # else m_translations[point_idx] = k_scaled_vec(k_pt_to_vec( *tr_point_on_sphere_generator++), m_half_sparsity); # endif # else // CGAL_TC_PERTURB_POSITION_TANGENTIAL const Tr_traits &local_tr_traits = m_triangulations[point_idx].tr().geom_traits(); typename Tr_traits::Compute_coordinate_d coord = local_tr_traits.compute_coordinate_d_object(); typename Kernel::Translated_point_d k_transl = m_k.translated_point_d_object(); typename Kernel::Construct_vector_d k_constr_vec = m_k.construct_vector_d_object(); typename Kernel::Scaled_vector_d k_scaled_vec = m_k.scaled_vector_d_object(); CGAL::Random_points_on_sphere_d tr_point_on_sphere_generator(m_intrinsic_dimension, 1); Tr_point local_random_transl = local_tr_traits.construct_weighted_point_d_object()( *tr_point_on_sphere_generator++, 0); Translation_for_perturb global_transl = k_constr_vec(m_ambiant_dim); const Tangent_space_basis &tsb = m_tangent_spaces[point_idx]; for (int i = 0 ; i < m_intrinsic_dimension ; ++i) { global_transl = k_transl( global_transl, k_scaled_vec(tsb[i], m_half_sparsity*coord(local_random_transl, i)) ); } // Parallel # if defined(CGAL_LINKED_WITH_TBB) && defined(CGAL_TC_GLOBAL_REFRESH) m_p_perturb_mutexes[point_idx].lock(); m_translations[point_idx] = global_transl; m_p_perturb_mutexes[point_idx].unlock(); // Sequential # else m_translations[point_idx] = global_transl; # endif # endif // CGAL_TC_PERTURB_POSITION_TANGENTIAL #endif // CGAL_TC_PERTURB_POSITION } bool try_to_solve_inconsistencies_in_a_local_triangulation( std::size_t tr_index) { bool is_inconsistent = false; #ifdef CGAL_LINKED_WITH_TBB //Tr_mutex::scoped_lock lock(m_tr_mutexes[tr_index]); #endif Star const& star = m_stars[tr_index]; Triangulation const& tr = m_triangulations[tr_index].tr(); Tr_vertex_handle center_vh = m_triangulations[tr_index].center_vertex(); const Tr_traits &local_tr_traits = tr.geom_traits(); int cur_dim = tr.current_dimension(); // For each incident simplex Star::const_iterator it_inc_simplex = star.begin(); Star::const_iterator it_inc_simplex_end = star.end(); for ( ; it_inc_simplex != it_inc_simplex_end ; ++it_inc_simplex) { const Incident_simplex &incident_simplex = *it_inc_simplex; // Don't check infinite cells if (*incident_simplex.rbegin() == std::numeric_limits::max()) continue; std::set c = incident_simplex; c.insert(tr_index); // Add the missing index //***************************************************************************** // STRATEGY 1: perturb all the points of the first inconsistent simplex //***************************************************************************** #ifdef CGAL_TC_PERTURB_THE_SIMPLEX_ONLY // Inconsistent? if (!is_simplex_consistent(c)) { is_inconsistent = true; for (std::set::const_iterator it = c.begin(); it != c.end() ; ++it) { perturb(*it); } # if !defined(CGAL_TC_GLOBAL_REFRESH) refresh_tangential_complex(); # endif // We will try the other cells next time break; } //***************************************************************************** // STRATEGY 2: perturb the center point only //***************************************************************************** #elif defined(CGAL_TC_PERTURB_THE_CENTER_VERTEX_ONLY) if (!is_simplex_consistent(c)) { is_inconsistent = true; std::size_t idx = tr_index; /*int k; do { k = rand() % tr.current_dimension(); } while ((*it_c)->vertex(k) == center_vh); std::size_t idx = (*it_c)->vertex(k)->data();*/ perturb(idx); # if !defined(CGAL_TC_GLOBAL_REFRESH) refresh_tangential_complex(); # endif // We will try the other cells next time break; } //***************************************************************************** // STRATEGY 3: perturb all the points of the 1-star //***************************************************************************** #elif defined(CGAL_TC_PERTURB_THE_1_STAR) // Inconsistent? if (!is_simplex_consistent(c)) { is_inconsistent = true; std::set the_1_star; Star::const_iterator it_inc_simplex = star.begin(); Star::const_iterator it_inc_simplex_end = star.end(); for ( ; it_inc_simplex != it_inc_simplex_end ; ++it_inc_simplex) { the_1_star.insert(it_inc_simplex->begin(), it_inc_simplex ->end()); } for (std::set::iterator it = the_1_star.begin() ; it != the_1_star.end() ; ++it) { perturb(*it); } # if !defined(CGAL_TC_GLOBAL_REFRESH) refresh_tangential_complex(); # endif // We will try the other cells next time break; } //***************************************************************************** // STRATEGY 4: perturb the k + 1 + CGAL_TC_NUMBER_OF_ADDITIONNAL_PERTURBED_POINTS // closest points (to the power center of first the inconsistent cell) //***************************************************************************** #elif defined(CGAL_TC_PERTURB_N_CLOSEST_POINTS) // Inconsistent? if (!is_simplex_consistent(c)) { is_inconsistent = true; // Get the k + 1 + CGAL_TC_NUMBER_OF_ADDITIONNAL_PERTURBED_POINTS // closest points std::vector simplex_pts; simplex_pts.reserve(c.size()); Incident_simplex::const_iterator it_point_idx = c.begin(); Incident_simplex::const_iterator it_point_idx_end = c.end(); // For each point p of the simplex, we reproject it onto the tangent // space. Could be optimized since it's already been computed before. for ( ; it_point_idx != it_point_idx_end ; ++it_point_idx) { #ifdef CGAL_TC_PERTURB_WEIGHT FT w = m_weights[*it_point_idx]; #else FT w = 0; #endif simplex_pts.push_back(project_point_and_compute_weight( m_points[*it_point_idx], w, m_points[tr_index], m_tangent_spaces[tr_index], local_tr_traits)); } typename Tr_traits::Power_center_d power_center = local_tr_traits.power_center_d_object(); typename Tr_traits::Compute_coordinate_d coord = local_tr_traits.compute_coordinate_d_object(); Point global_center = unproject_point( power_center(simplex_pts.begin(), simplex_pts.end()), m_points[tr_index], m_tangent_spaces[tr_index], local_tr_traits); KNS_range kns_range = m_points_ds.query_ANN( global_center, CGAL_TC_NUMBER_OF_PERTURBED_POINTS(m_intrinsic_dimension)); std::vector neighbors; for (KNS_iterator nn_it = kns_range.begin() ; nn_it != kns_range.end() ; ++nn_it) { neighbors.push_back(nn_it->first); } for (std::vector::iterator it = neighbors.begin(); it != neighbors.end() ; ++it) { perturb(*it); } # if !defined(CGAL_TC_GLOBAL_REFRESH) refresh_tangential_complex(); # endif // We will try the other cells next time break; } //***************************************************************************** // STRATEGY 5: perturb one random point of the simplex //***************************************************************************** #else // Inconsistent? if (!is_simplex_consistent(c)) { is_inconsistent = true; int rnd = m_random_generator.get_int(0, static_cast(c.size())); if (rnd == 0) perturb(tr_index); else { std::set::const_iterator it_idx = c.begin(); std::advance(it_idx, rnd - 1); perturb(*it_idx); } # if !defined(CGAL_TC_GLOBAL_REFRESH) refresh_tangential_complex(); # endif // We will try the other cells next time break; } #endif // CGAL_TC_PERTURB_THE_SIMPLEX_ONLY } return is_inconsistent; } std::ostream &export_vertices_to_off( std::ostream & os, std::size_t &num_vertices, bool use_perturbed_points = false) { if (m_points.empty()) { num_vertices = 0; return os; } // If m_intrinsic_dimension = 1, we output each point two times // to be able to export each segment as a flat triangle with 3 different // indices (otherwise, Meshlab detects degenerated simplices) const int N = (m_intrinsic_dimension == 1 ? 2 : 1); const int ambient_dim = m_k.point_dimension_d_object()(*m_points.begin()); // Kernel functors typename Kernel::Compute_coordinate_d coord = m_k.compute_coordinate_d_object(); int num_coords = min(ambient_dim, 3); #ifdef CGAL_TC_EXPORT_NORMALS Vectors::const_iterator it_n = m_normals.begin(); #endif typename Points::const_iterator it_p = m_points.begin(); typename Points::const_iterator it_p_end = m_points.end(); // For each point p for (std::size_t i = 0 ; it_p != it_p_end ; ++it_p, ++i) { Point p = (use_perturbed_points ? compute_perturbed_point(i) : *it_p); for (int ii = 0 ; ii < N ; ++ii) { int i = 0; for ( ; i < num_coords ; ++i) os << CGAL::to_double(coord(p, i)) << " "; if (i == 2) os << "0"; #ifdef CGAL_TC_EXPORT_NORMALS for (i = 0 ; i < num_coords ; ++i) os << " " << CGAL::to_double(coord(*it_n, i)); #endif os << std::endl; } #ifdef CGAL_TC_EXPORT_NORMALS ++it_n; #endif } num_vertices = N*m_points.size(); return os; } void insert_higher_dim_simplex_into_star( std::size_t index, const std::set &simplex) { Incident_simplex incident_simplex = simplex; incident_simplex.erase(index); // Remove the center index Star &star = m_stars[index]; std::set::const_iterator it_point_idx = simplex.begin(); std::set::const_iterator it_point_idx_end = simplex.end(); for ( ; it_point_idx != it_point_idx_end ; ++it_point_idx) { // Skip center index if (*it_point_idx == index) continue; // Temporarily remove this index incident_simplex.erase(*it_point_idx); // Erase incident_simplex from star star.erase(std::remove(star.begin(), star.end(), incident_simplex), star.end()); incident_simplex.insert(*it_point_idx); } star.push_back(incident_simplex); } // Solves one inconsistency // "inconsistent_simplex" must contain p_idx and q_idx // "inconsistent_simplex" must be in star(p) but not in star(q) void solve_inconsistency_by_adding_higher_dimensional_simplices( std::size_t p_idx, std::size_t q_idx, const std::set &inconsistent_simplex) { CGAL_assertion_code( std::set inc_s_minus_p = inconsistent_simplex; inc_s_minus_p.erase(p_idx); std::set inc_s_minus_q = inconsistent_simplex; inc_s_minus_q.erase(q_idx); ); CGAL_assertion(std::find(m_stars[p_idx].begin(), m_stars[p_idx].end(), inc_s_minus_p) != m_stars[p_idx].end()); CGAL_assertion(std::find(m_stars[q_idx].begin(), m_stars[q_idx].end(), inc_s_minus_q) == m_stars[q_idx].end()); typename Kernel::Point_drop_weight_d k_drop_w = m_k.point_drop_weight_d_object(); typename Kernel::Translated_point_d k_transl = m_k.translated_point_d_object(); typename Kernel::Squared_distance_d k_sqdist = m_k.squared_distance_d_object(); typename Kernel::Difference_of_points_d k_diff_pts = m_k.difference_of_points_d_object(); typename Kernel::Scalar_product_d k_inner_pdct = m_k.scalar_product_d_object(); typename Kernel::Construct_weighted_point_d k_constr_wp = m_k.construct_weighted_point_d_object(); typename Kernel::Power_distance_d k_power_dist = m_k.power_distance_d_object(); const Tr_traits &q_tr_traits = m_triangulations[q_idx].tr().geom_traits(); typename Tr_traits::Power_center_d tr_power_center = q_tr_traits.power_center_d_object(); typename Tr_traits::Point_weight_d tr_point_weight = q_tr_traits.point_weight_d_object(); //------------------------------------------------------------------------- //1. Compute power_center(p'q'r1'r2'..ri') in Tp => Cp //2. Compute power_center(inconsistent_simplex projected in Tq) // => gives Cq and radius Rq // Rq is also the radius of the ambient sphere S whose center is Cq and // which goes through all the ambient points of "inconsistent_simplex" //------------------------------------------------------------------------ std::vector simplex_pts_in_Tp, simplex_pts_in_Tq; simplex_pts_in_Tp.reserve(inconsistent_simplex.size()); simplex_pts_in_Tq.reserve(inconsistent_simplex.size()); // No need to lock the mutex here since this will not be called while // other threads are perturbing the positions const Point pt_p = compute_perturbed_point(p_idx); const Point pt_q = compute_perturbed_point(q_idx); std::set::const_iterator it_point_idx = inconsistent_simplex.begin(); std::set::const_iterator it_point_idx_end = inconsistent_simplex.end(); // For each point of the simplex, we reproject it onto the tangent // space. Could be optimized since it's already been computed before. for ( ; it_point_idx != it_point_idx_end ; ++it_point_idx) { const Weighted_point wp = compute_perturbed_weighted_point(*it_point_idx); // No need to lock the Mutex_for_perturb here since this will not be // called while other threads are perturbing the positions simplex_pts_in_Tp.push_back(project_point_and_compute_weight( wp, pt_p, m_tangent_spaces[p_idx], q_tr_traits)); simplex_pts_in_Tq.push_back(project_point_and_compute_weight( wp, pt_q, m_tangent_spaces[q_idx], q_tr_traits)); } Tr_point Cp = tr_power_center( simplex_pts_in_Tp.begin(), simplex_pts_in_Tp.end()); Tr_point Cq = tr_power_center( simplex_pts_in_Tq.begin(), simplex_pts_in_Tq.end()); FT circumsphere_sqradius_p = tr_point_weight(Cp); FT circumsphere_sqradius_q = tr_point_weight(Cq); #ifdef CGAL_TC_PERTURB_WEIGHT FT squared_circumsphere_radius_q_plus_margin = circumsphere_sqradius_q + 4*m_sq_half_sparsity; #else FT squared_circumsphere_radius_q_plus_margin = CGAL::square( CGAL::sqrt(circumsphere_sqradius_q) + 2*m_half_sparsity); #endif Weighted_point global_Cp = k_constr_wp( unproject_point(Cp, pt_p, m_tangent_spaces[p_idx], q_tr_traits), circumsphere_sqradius_p); Weighted_point global_Cq = k_constr_wp( unproject_point(Cq, pt_q, m_tangent_spaces[q_idx], q_tr_traits), circumsphere_sqradius_q); // CJTODO TEMP ==================== /*{ INS_range ins_range = m_points_ds.query_incremental_ANN(k_drop_w(global_Cp)); for (INS_iterator nn_it = ins_range.begin() ; nn_it != ins_range.end() ; ++nn_it) { FT neighbor_sqdist = nn_it->second; //std::cerr << nn_it->first << " : " << neighbor_sqdist << " / "; // CJTODO TEMP // When we're sure we got all the potential points, break //if (neighbor_sqdist > circumsphere_sqradius_p + m_sq_half_sparsity) // break; std::size_t neighbor_point_idx = nn_it->first; FT point_to_Cp_power_sqdist = k_power_dist( global_Cp, compute_perturbed_weighted_point(neighbor_point_idx)); //std::cerr << point_to_Cp_power_sqdist << std::endl; // CJTODO TEMP // If the point is ACTUALLY "inside" S if (point_to_Cp_power_sqdist <= FT(0) && inconsistent_simplex.find(neighbor_point_idx) == inconsistent_simplex.end()) { std::cerr << "Warning: " << neighbor_point_idx << " is inside Cp with power dist " << point_to_Cp_power_sqdist << "\n"; } } }*/ // /CJTODO ==================== //------------------------------------------------------------------------- //3. Find points t1, t2... (in ambient space) which are inside S //------------------------------------------------------------------------- std::vector inside_pt_indices; INS_range ins_range = m_points_ds.query_incremental_ANN(k_drop_w(global_Cq)); for (INS_iterator nn_it = ins_range.begin() ; nn_it != ins_range.end() ; ++nn_it) { FT neighbor_sqdist = nn_it->second; // When we're sure we got all the potential points, break if (neighbor_sqdist > squared_circumsphere_radius_q_plus_margin) break; std::size_t neighbor_point_idx = nn_it->first; FT point_to_Cq_power_sqdist = k_power_dist( global_Cq, compute_perturbed_weighted_point(neighbor_point_idx)); // If the point is ACTUALLY "inside" S if (point_to_Cq_power_sqdist <= FT(0) && inconsistent_simplex.find(neighbor_point_idx) == inconsistent_simplex.end()) { inside_pt_indices.push_back(neighbor_point_idx); } // CJTODO: use this instead of point_to_Cq_power_sqdist? /*{ typename Tr_traits::Power_test_d side = q_tr_traits.power_test_d_object(); typename Tr_traits::Orientation_d orient = q_tr_traits.orientation_d_object(); Orientation o = orient(simplex_pts_in_Tq.begin(), simplex_pts_in_Tq.end()); auto p = project_point_and_compute_weight( compute_perturbed_weighted_point(neighbor_point_idx), pt_q, m_tangent_spaces[q_idx], q_tr_traits); auto sid = (o == NEGATIVE ? side(simplex_pts_in_Tq.rbegin(), simplex_pts_in_Tq.rend(), p) : side(simplex_pts_in_Tq.begin(), simplex_pts_in_Tq.end(), p)); switch(sid) { case ON_NEGATIVE_SIDE: std::cerr << "ON_NEGATIVE_SIDE" << std::endl; // CJTODO TEMP break; case ON_POSITIVE_SIDE: std::cerr << "ON_POSITIVE_SIDE" << std::endl; // CJTODO TEMP break; case ON_ORIENTED_BOUNDARY: std::cerr << "ON_ORIENTED_BOUNDARY" << std::endl; // CJTODO TEMP break; } }*/ } CGAL_assertion_msg(!inside_pt_indices.empty(), "There should be at least one vertex inside the sphere"); // CJTODO TEMP DEBUG /*if (inside_pt_indices.empty()) { //compute_tangent_triangulation(q_idx, true, true); std::cerr << "Error: inside_pt_indices.empty()\n"; std::cerr << "Stars:\n"; for (auto s : m_stars[q_idx]) { std::cerr << q_idx << " "; std::copy(s.begin(), s.end(), std::ostream_iterator(std::cerr, " ")); std::cerr << std::endl; } std::cerr << std::endl; }*/ // CJTODO TEMP DEBUG if (inside_pt_indices.size() > 1) { std::cerr << "Warning: " << inside_pt_indices.size() << " insiders in " << inconsistent_simplex.size() - 1 << " simplex\n"; } //------------------------------------------------------------------------- //4. If there's more than one ti... or not //------------------------------------------------------------------------- std::size_t inside_point_idx; if (inside_pt_indices.size() > 1) { //----------------------------------------------------------------------- //5. For each ti, compute the sphere that goes through // p, q, r1, r2..., ri and ti whose center is on (cp, cq) // We're looking for a point on (Cp, Cq) at equal distance from p and // ti. // The center of the sphere is then: Cp + a(Cq - Cp) // where a = (sqdist(Cp,ti) - sqdist(Cp,p)) / (2*(Cq-Cp).(ti-p)) //6. Keep point ti such as dist(cp, ci) is the smallest //----------------------------------------------------------------------- FT min_a = std::numeric_limits::max(); for (auto idx : inside_pt_indices) // CJTODO: C++11 { const Point ti = compute_perturbed_point(idx); const Point &cp = k_drop_w(global_Cp); const Point &cq = k_drop_w(global_Cq); #ifdef CGAL_TC_PERTURB_WEIGHT const Weighted_point ti_w = compute_perturbed_weighted_point(idx); const Weighted_point p_w = compute_perturbed_weighted_point(p_idx); const Weighted_point cp_w0 = k_constr_wp(k_drop_w(global_Cp), FT(0)); const Weighted_point wp_w0 = k_constr_wp(k_drop_w(global_Cq), FT(0)); FT a = (k_power_dist(cp_w0, ti_w) - k_power_dist(cp_w0, p_w)) / (FT(2)*k_inner_pdct(k_diff_pts(cq, cp), k_diff_pts(ti, pt_p))); #else FT a = (k_sqdist(cp, ti) - k_sqdist(cp, pt_p)) / (FT(2)*k_inner_pdct(k_diff_pts(cq, cp), k_diff_pts(ti, pt_p))); #endif if (a < min_a) { min_a = a; inside_point_idx = idx; } } // CJTODO TEMP ==================== /*{ typename Kernel::Scaled_vector_d scaled_vec = m_k.scaled_vector_d_object(); typename Kernel::Point_weight_d k_weight = m_k.point_weight_d_object(); Weighted_point C = k_constr_wp( k_transl(k_drop_w(global_Cp), scaled_vec(k_diff_pts(k_drop_w(global_Cq), k_drop_w(global_Cp)), min_a)), k_sqdist(k_transl(k_drop_w(global_Cp), scaled_vec(k_diff_pts(k_drop_w(global_Cq), k_drop_w(global_Cp)), min_a)), pt_p)); INS_range ins_range = m_points_ds.query_incremental_ANN(k_drop_w(C)); for (INS_iterator nn_it = ins_range.begin() ; nn_it != ins_range.end() ; ++nn_it) { FT neighbor_sqdist = nn_it->second; //std::cerr << nn_it->first << " : " << neighbor_sqdist << " / "; // CJTODO TEMP // When we're sure we got all the potential points, break if (neighbor_sqdist > k_weight(C) + m_sq_half_sparsity) break; std::size_t neighbor_point_idx = nn_it->first; FT point_to_C_power_sqdist = k_power_dist(C, compute_perturbed_weighted_point(neighbor_point_idx)); //std::cerr << point_to_Cp_power_sqdist << std::endl; // CJTODO TEMP // If the point is ACTUALLY "inside" S if (point_to_C_power_sqdist <= FT(-0.000001) && inconsistent_simplex.find(neighbor_point_idx) == inconsistent_simplex.end()) { std::cerr << "Warning: " << neighbor_point_idx << " is inside C with power dist " << point_to_C_power_sqdist << "\n"; } } }*/ // /CJTODO ==================== } else { inside_point_idx = *inside_pt_indices.begin(); } //------------------------------------------------------------------------- //7. Create a k+1-simplex (inconsistent_simplex, ti) //------------------------------------------------------------------------- std::set new_simplex = inconsistent_simplex; new_simplex.insert(inside_point_idx); it_point_idx = new_simplex.begin(); it_point_idx_end = new_simplex.end(); for ( ; it_point_idx != it_point_idx_end ; ++it_point_idx) { insert_higher_dim_simplex_into_star(*it_point_idx, new_simplex); } // CJTODO: call // check_and_solve_inconsistencies_by_adding_higher_dim_simplices // recursively? Not sure, since the star will be parsed again from // the beginning } // Test and solve inconsistencies of a simplex. // Returns true if some inconsistencies were found. // Precondition: incident_simplex is in the star of m_points[tr_index] bool check_and_solve_inconsistencies_by_adding_higher_dim_simplices( std::size_t tr_index, const std::set &incident_simplex) { bool inconsistencies_found = false; // Don't check infinite simplices if (*incident_simplex.rbegin() == std::numeric_limits::max()) return false; std::set simplex = incident_simplex; simplex.insert(tr_index); // Check if the simplex is in the stars of all its vertices std::set::const_iterator it_point_idx = incident_simplex.begin(); // For each point p of the simplex, we parse the incidents cells of p // and we check if "simplex" is among them for ( ; it_point_idx != incident_simplex.end() ; ++it_point_idx) { std::size_t point_idx = *it_point_idx; Star const& star = m_stars[point_idx]; // What we're looking for is "simplex" \ point_idx Incident_simplex ic_to_find = simplex; ic_to_find.erase(point_idx); if (std::find(star.begin(), star.end(), ic_to_find) == star.end()) { solve_inconsistency_by_adding_higher_dimensional_simplices( tr_index, *it_point_idx, simplex); inconsistencies_found = true; break; } } return inconsistencies_found; } std::ostream &export_simplices_to_off( std::ostream & os, std::size_t &num_simplices, bool color_inconsistencies = false, std::set > const *p_additional_simpl_to_color = NULL) { // If m_intrinsic_dimension = 1, each point is output two times // (see export_vertices_to_off) num_simplices = 0; std::size_t num_inconsistent_simplices = 0; std::size_t num_inconsistent_stars = 0; typename Tr_container::const_iterator it_tr = m_triangulations.begin(); typename Tr_container::const_iterator it_tr_end = m_triangulations.end(); // For each triangulation for (std::size_t idx = 0 ; it_tr != it_tr_end ; ++it_tr, ++idx) { bool is_star_inconsistent = false; Triangulation const& tr = it_tr->tr(); Tr_vertex_handle center_vh = it_tr->center_vertex(); if (tr.current_dimension() < m_intrinsic_dimension) continue; // Color for this star std::stringstream color; //color << rand()%256 << " " << 100+rand()%156 << " " << 100+rand()%156; color << 128 << " " << 128 << " " << 128; // Gather the triangles here, with a bool saying if it's consistent typedef std::vector, bool> > Star_using_triangles; Star_using_triangles star_using_triangles; // For each cell of the star Star::const_iterator it_inc_simplex = m_stars[idx].begin(); Star::const_iterator it_inc_simplex_end = m_stars[idx].end(); for ( ; it_inc_simplex != it_inc_simplex_end ; ++it_inc_simplex) { std::set c = *it_inc_simplex; c.insert(idx); std::size_t num_vertices = c.size(); bool color_simplex = false; if (color_inconsistencies) { color_simplex = !is_simplex_consistent(c); if (color_simplex) is_star_inconsistent = true; } if (p_additional_simpl_to_color && !color_simplex) { color_simplex = (std::find( p_additional_simpl_to_color->begin(), p_additional_simpl_to_color->end(), c) != p_additional_simpl_to_color->end()); } // If only 2 vertices, add a third one (each vertex is duplicated in // the file when m_intrinsic dim = 2) if (num_vertices == 2) { std::set tmp_c; std::set::iterator it = c.begin(); for ( ; it != c.end() ; ++it) tmp_c.insert(*it * 2); tmp_c.insert(*c.rbegin() + 1); c = tmp_c; } if (num_vertices <= 3) { star_using_triangles.push_back(std::make_pair(c, color_simplex)); } else { // num_vertices >= 4: decompose the simplex in triangles std::vector booleans(num_vertices, false); std::fill(booleans.begin() + num_vertices - 3, booleans.end(), true); do { std::set triangle; std::set::iterator it = c.begin(); for (int i = 0; it != c.end() ; ++i, ++it) { if (booleans[i]) triangle.insert(*it); } star_using_triangles.push_back( std::make_pair(triangle, color_simplex)); } while (std::next_permutation(booleans.begin(), booleans.end())); } } // For each cell Star_using_triangles::const_iterator it_simplex = star_using_triangles.begin(); Star_using_triangles::const_iterator it_simplex_end = star_using_triangles.end(); for ( ; it_simplex != it_simplex_end ; ++it_simplex) { // Don't export infinite cells if (*it_simplex->first.rbegin() == std::numeric_limits::max()) continue; const std::set &c = it_simplex->first; bool color_simplex = it_simplex->second; std::stringstream sstr_c; std::set::const_iterator it_point_idx = c.begin(); for ( ; it_point_idx != c.end() ; ++it_point_idx) { sstr_c << *it_point_idx << " "; } // In order to have only one time each simplex, we only keep it // if the lowest index is the index of the center vertex if (*c.begin() != idx && !color_simplex) continue; os << 3 << " " << sstr_c.str(); if (color_inconsistencies || p_additional_simpl_to_color) { if (color_simplex) { os << " 255 0 0"; ++num_inconsistent_simplices; } else os << " " << color.str(); } ++num_simplices; os << std::endl; } if (is_star_inconsistent) ++num_inconsistent_stars; } #ifdef CGAL_TC_VERBOSE std::cerr << std::endl << "==========================================================" << std::endl << "Export to OFF:\n" << " * Number of vertices: " << m_points.size() << std::endl << " * Total number of simplices: " << num_simplices << std::endl << " * Number of inconsistent stars: " << num_inconsistent_stars << " (" << (m_points.size() > 0 ? 100. * num_inconsistent_stars / m_points.size() : 0.) << "%)" << std::endl << " * Number of inconsistent simplices: " << num_inconsistent_simplices << " (" << (num_simplices > 0 ? 100. * num_inconsistent_simplices / num_simplices : 0.) << "%)" << std::endl << "==========================================================" << std::endl; #endif return os; } std::ostream &export_simplices_to_off( const Simplicial_complex &complex, std::ostream & os, std::size_t &num_simplices, std::set > const *p_additional_simpl_to_color = NULL) { typedef Simplicial_complex::Simplex Simplex; typedef Simplicial_complex::Simplex_range Simplex_range; // If m_intrinsic_dimension = 1, each point is output two times // (see export_vertices_to_off) num_simplices = 0; typename Simplex_range::const_iterator it_s = complex.simplex_range().begin(); typename Simplex_range::const_iterator it_s_end = complex.simplex_range().end(); // For each triangulation for ( ; it_s != it_s_end ; ++it_s) { Simplex c = *it_s; bool color_simplex = false; if (p_additional_simpl_to_color) { color_simplex = (std::find( p_additional_simpl_to_color->begin(), p_additional_simpl_to_color->end(), c) != p_additional_simpl_to_color->end()); } // Gather the triangles here typedef std::vector Triangles; Triangles triangles; std::size_t num_vertices = c.size(); // Do not export smaller dimension simplices if (num_vertices < m_intrinsic_dimension + 1) continue; // If only 2 vertices, add a third one (each vertex is duplicated in // the file when m_intrinsic dim = 2) if (num_vertices == 2) { std::set tmp_c; std::set::iterator it = c.begin(); for ( ; it != c.end() ; ++it) tmp_c.insert(*it * 2); tmp_c.insert(*c.rbegin() + 1); c = tmp_c; } if (num_vertices <= 3) { triangles.push_back(c); } else { // num_vertices >= 4: decompose the simplex in triangles std::vector booleans(num_vertices, false); std::fill(booleans.begin() + num_vertices - 3, booleans.end(), true); do { std::set triangle; std::set::iterator it = c.begin(); for (int i = 0; it != c.end() ; ++i, ++it) { if (booleans[i]) triangle.insert(*it); } triangles.push_back(triangle); } while (std::next_permutation(booleans.begin(), booleans.end())); } // For each cell Triangles::const_iterator it_tri = triangles.begin(); Triangles::const_iterator it_tri_end = triangles.end(); for ( ; it_tri != it_tri_end ; ++it_tri) { // Don't export infinite cells if (*it_tri->rbegin() == std::numeric_limits::max()) continue; os << 3 << " "; std::set::const_iterator it_point_idx = it_tri->begin(); for ( ; it_point_idx != it_tri->end() ; ++it_point_idx) { os << *it_point_idx << " "; } if (p_additional_simpl_to_color) { if (color_simplex) os << " 255 0 0"; else os << " 128 128 128"; } ++num_simplices; os << std::endl; } } #ifdef CGAL_TC_VERBOSE std::cerr << std::endl << "==========================================================" << std::endl << "Export to OFF:\n" << " * Number of vertices: " << m_points.size() << std::endl << " * Total number of simplices: " << num_simplices << std::endl << "==========================================================" << std::endl; #endif return os; } private: const Kernel m_k; const int m_intrinsic_dimension; const double m_half_sparsity; const double m_sq_half_sparsity; const int m_ambiant_dim; Points m_points; #ifdef CGAL_TC_PERTURB_WEIGHT Weights_for_perturb m_weights; #endif #ifdef CGAL_TC_PERTURB_POSITION Translations_for_perturb m_translations; # if defined(CGAL_LINKED_WITH_TBB) && defined(CGAL_TC_GLOBAL_REFRESH) Mutex_for_perturb *m_p_perturb_mutexes; # endif #endif #ifdef CGAL_TC_PERTURB_TANGENT_SPACE std::vector > m_perturb_tangent_space; #endif Points_ds m_points_ds; TS_container m_tangent_spaces; Tr_container m_triangulations; // Contains the triangulations // and their center vertex Stars_container m_stars; #ifdef CGAL_LINKED_WITH_TBB //std::vector m_tr_mutexes; #endif #ifdef CGAL_TC_EXPORT_NORMALS Vectors m_normals; #endif #ifdef USE_ANOTHER_POINT_SET_FOR_TANGENT_SPACE_ESTIM Points m_points_for_tse; Points_ds m_points_ds_for_tse; #endif mutable CGAL::Random m_random_generator; }; // /class Tangential_complex } // end namespace CGAL #endif // TANGENTIAL_COMPLEX_H