// Copyright (c) 2011 INRIA Bordeaux Sud-Ouest (France), All rights reserved. // // This file is part of CGAL (www.cgal.org); you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public License as // published by the Free Software Foundation; version 2.1 of the License. // See the file LICENSE.LGPL distributed with CGAL. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // // Author(s) : Gael Guennebaud #ifndef CGAL_EIGEN_SOLVER_TRAITS_H #define CGAL_EIGEN_SOLVER_TRAITS_H #include // include basic.h before testing #defines #define EIGEN_YES_I_KNOW_SPARSE_MODULE_IS_NOT_STABLE_YET #include #include #include #include #include namespace CGAL { namespace internal { template struct Get_eigen_matrix{ typedef Eigen_sparse_matrix type; }; template struct Get_eigen_matrix< ::Eigen::ConjugateGradient,FT>{ typedef Eigen_sparse_symmetric_matrix type; }; template struct Get_eigen_matrix< ::Eigen::SimplicialCholesky,FT>{ typedef Eigen_sparse_symmetric_matrix type; }; } //internal /// The class Eigen_solver_traits /// is a generic traits class for solving asymmetric or symmetric positive definite (SPD) /// sparse linear systems using one of the Eigen solvers. /// The default solver is the iterative bi-congugate gradient stabilized solver /// Eigen::BiCGSTAB for double. /// /// @heading Is Model for the Concepts: Model of the SparseLinearAlgebraTraits_d concept. template::EigenType> > class Eigen_solver_traits { typedef typename EigenSolverT::Scalar Scalar; // Public types public: typedef Scalar NT; typedef typename internal::Get_eigen_matrix::type Matrix; typedef Eigen_vector Vector; // Public operations public: Eigen_solver_traits() { } EigenSolverT& solver() { return m_solver; } /// Solve the sparse linear system "A*X = B". /// Return true on success. The solution is then (1/D) * X. /// /// @commentheading Preconditions: /// - A.row_dimension() == B.dimension(). /// - A.column_dimension() == X.dimension(). bool linear_solver(const Matrix& A, const Vector& B, Vector& X, NT& D) { D = 1; // Eigen does not support homogeneous coordinates m_solver.compute(A.eigen_object()); if(m_solver.info() != Eigen::Success) return false; X.eigen_object() = m_solver.solve(B); return m_solver.info() == Eigen::Success; } bool pre_factor (const Matrix& A, NT& D) { D = 1; m_mat = A.eigen_object(); m_solver.compute(m_mat); return m_solver.info() == Eigen::Success; } bool solve(const Vector& B, Vector& X) { X.eigen_object() = m_solver.solve(B); return m_solver.info() == Eigen::Success; } protected: EigenSolverT m_solver; typename Matrix::EigenType m_mat; }; } //namespace CGAL #endif // CGAL_EIGEN_SOLVER_TRAITS_H