\begin{ccRefConcept}{PolynomialTraits_d::GcdUpToConstantFactor} \ccDefinition This \ccc{AdaptableBinaryFunction} computes the $gcd$ {\em up to a constant factor (utcf)} of two polynomials of type \ccc{PolynomialTraits_d::Polynomial_d}. In case the base ring $R$ (\ccc{PolynomialTraits_d::Innermost_coefficient_type}) is not a \ccc{UniqueFactorizationDomain} or not a \ccc{Field} the polynomial ring $R[x_0,\dots,x_{d-1}]$ (\ccc{PolynomialTraits_d::Polynomial_d}) may not possesses greatest common divisors. However, since $R$ is an integral domain one can consider its quotient field $Q(R)$ for which $gcd$s of polynomials exist. This functor computes $gcd\_utcf(f,g) = D * gcd(f,g)$, for some $D \in R$ such that $gcd\_utcf(f,g) \in R[x_0,\dots,x_{d-1}]$. Hence, $gcd\_utcf(f,g)$ may not be a divisor of $f$ and $g$ in $R[x_0,\dots,x_{d-1}]$. \ccRefines \ccc{AdaptableBinaryFunction} \ccTypes \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccCreationVariable{fo} \ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d second_argument_type;}{} \ccOperations \ccMethod{result_type operator()(first_argument_type f, second_argument_type g);} {Computes $gcd(f,g)$ up to a constant factor.} %\ccHasModels \ccSeeAlso \ccRefIdfierPage{Polynomial_d}\\ \ccRefIdfierPage{PolynomialTraits_d}\\ \ccRefIdfierPage{PolynomialTraits_d::IntegralDivisionUpToConstantFactor}\\ \ccRefIdfierPage{PolynomialTraits_d::UnivariateContentUpToConstantFactor}\\ \ccRefIdfierPage{PolynomialTraits_d::SquareFreeFactorizeUpToConstantFactor}\\ \end{ccRefConcept}