\begin{ccRefConcept}{AlgebraicKernel_2_2::PolynomialForCircles_2_2} \ccDefinition The \ccc{AlgebraicKernel_2_2::PolynomialForCircles_2_2} represents bivariate polynomials of degree up to~2 capable of storing equations of circles, whose center has coordinates of type \ccc{FT}, a model of \ccc{FieldNumberType}, as well as the square of the radius. \footnote{Of course the name looks bad since it mixes geometry with algebra. suggestions welcome} \ccCreation \ccCreationVariable{pol} \ccConstructor{PolynomialForCircles_2_2();}{Default constructor.} %\ccConstructor{PolynomialForCircles_2_2(const FT & a, const FT & b, const FT & rsq);}{Constructs polynomial \ccc{(x-a)^2 + (y-b)^2 - rsq}.} %\ccAccessFunctions %\ccMethod{const FT & a();}{\ccc{x}-coordinate of the center of the circle.} %\ccGlue %\ccMethod{const FT & b();}{\ccc{y}-coordinate of the center of the circle.} %\ccGlue %\ccMethod{const FT & r_sq();}{Square radius of the center of the circle.} \ccOperations The comparison operator \ccc{==} must be provided. \ccFunction{bool operator == (AlgebraicKernel_2_2::const PolynomialForCircles_2_2 & p, const AlgebraicKernel_2_2::PolynomialForCircles_2_2 & q);}{} \ccHasModels \ccc{Polynomial_for_circles_2_2} \ccSeeAlso \ccRefIdfierPage{AlgebraicKernel_2_2} \end{ccRefConcept} \begin{ccRefConcept}{Algebraic_kernel_4_2::Polynomial_2_2} \ccDefinition The \ccc{Algebraic_kernel_4_2::Polynomial_2_2} represents bivariate polynomials of degree up to~2 whose coefficients are of type \ccc{RT}, a model of \ccc{RingNumberType}. \end{ccRefConcept}