% begin cgal manual page \begin{ccRefClass}[Nef_polyhedron_S2::]{Sphere_point} \ccCreationVariable{p} \ccDefinition An object \ccc{p} of type \ccc{Sphere_point} is a point on the surface of a unit sphere. Such points correspond to the nontrivial directions in space and similarly to the equivalence classes of all nontrivial vectors under normalization. \ccSetOneOfTwoColumns{5cm} \ccTypes \ccNestedType{RT}{ring number type.} \ccSetOneOfTwoColumns{5cm} \ccCreation \ccConstructor{Sphere_point()}{ creates some sphere point. } \ccConstructor{Sphere_point(RT x, RT y, RT z)}{ creates a sphere point corresponding to the point of intersection of the ray starting at the origin in direction $(x,y,z)$ and the surface of $S_2$. } \ccSetTwoOfThreeColumns{4cm}{2cm} \ccOperations Access to the coordinates is provided by the following operations. Note that the vector $(x,y,z)$ is not normalized. \ccMethod{RT x() ;}{ the $x$-coordinate. } \ccMethod{RT y() ;}{ the $y$-coordinate. } \ccMethod{RT z() ;}{ the $z$-coordinate. } \ccMethod{bool operator==(const Sphere_point& q) ;}{Equality.} \ccMethod{bool operator!=(const Sphere_point& q) ;}{Inequality.} \ccMethod{Sphere_point antipode() ;}{returns the antipode of \ccc{p}.} \end{ccRefClass}