% begin cgal manual page \begin{ccRefClass}{Sphere_triangle}\ccCreationVariable{t} \ccDefinition An object \ccc{t} of type \ccc{Sphere_triangle} is a triangle on the surface of the unit sphere. \ccSetOneOfTwoColumns{5cm} \ccTypes \ccNestedType{R}{ representation class. } \ccNestedType{RT}{ ring type. } \ccSetOneOfTwoColumns{5cm} \ccCreation \ccConstructor{Sphere_triangle()}{ creates some triangle. } \ccConstructor{Sphere_triangle(Sphere_point p0, Sphere_point p1, Sphere_point p2, Sphere_circle c0, Sphere_circle c1, Sphere_circle c2)}{ creates a triangle spanned by the three points \ccc{p0}, \ccc{p1}, \ccc{p2}, where the triangle is left of the three circles \ccc{c0}, \ccc{c1}, \ccc{c2}. \ccPrecond $c_i$ contains $p_i$ and $p_{i+1}$ mod 3. } \ccSetTwoOfThreeColumns{4cm}{2cm} \ccOperations \ccMethod{const Sphere_point& point(unsigned i) ;}{ returns the ith point of \ccc{t}. } \ccMethod{const Sphere_circle& circle(unsigned i) ;}{ returns the ith circle of \ccc{t}. } \ccMethod{Sphere_triangle opposite() ;}{ returns the opposite of \ccc{t}. } \end{ccRefClass}