
Getting started with CGAL Polyhedron
the example of subdivision surfaces

Le-Jeng Shiue∗ Pierre Alliez† Radu Ursu‡

Abstract

This document is a tutorial on how to get started with the halfedge data structure provided by CGAL,
the Computational Geometry Algorithm Library. Assuming the reader to be familiar with the C++ tem-
plate mechanisms and the key concepts of the STL (Standard Template Library), we describe three different
approaches with increasing level of sophistication for implementing mesh subdivision schemes. The sim-
plest approach uses simple Euler operators to implement the

√
3 subdivision scheme applicable to triangle

meshes. A second approach overloads the incremental builder already provided by CGAL to implement the
quad-triangle subdivision scheme applicable to polygon meshes. The third approach is generic and offers
a convenient way to design its own subdivision scheme through the definition of rule templates. Catmull-
Clark, Loop and Doo-Sabin schemes are illustrated using the latter approach. Two companion applications,
one developed on Windows with MS .NET, MFC and OpenGL, and the other developed for both Linux
and Windows with Qt and OpenGL, implement the subdivision schemes listedabove, as well as several
functionalities for interaction, visualization and raster/vectorial output.

Keywords: CGAL library, tutorial, halfedge data structure, polygon surface mesh,subdivision surfaces,
quad-triangle,

√
3, Loop, Doo-Sabin, Catmull-Clark, OpenGL.

1 Introduction
The CGAL library is a joint effort between nine European institutes [?]. The goal of CGAL is to make
available to users in industry and academia some efficient solutions to basicgeometric problems developed
in the area of computational geometry in a C++ software library.

CGAL features a 3D polygon surface mesh data structure based on the concept of halfedge data
structure [?], which has been very successful for the design of general algorithms on meshes. In this
document we provide a tutorial to get started with CGAL Polyhedron data structure through the example
of subdivision surfaces. We also offer an application both under windows and linux, featuring an
OpenGL-based viewer, an arcball for interaction and two ways (rasterand vectorial) to produce pictures
and illustrations.

The main targeted audience is a master or a Ph.D. student in computer graphics or computational geom-
etry, aiming at doing some research on mesh processing algorithms. Wehope this tutorial will convince the
reader :

• not reinventing the wheel. Taking some time choosing the “right tool” is oftenworth it. This may
true, even for a short project;

∗SurfLab, University of Florida
†GEOMETRICA, INRIA Sophia-Antipolis
‡GEOMETRICA, INRIA Sophia-Antipolis

Figure 1 –Snapshot taken from the tutorial application running on Windows. A polygon mesh is subdivided
using the quad-triangle subdivision scheme [?].

• using an optimized and robust library to ease the implementation and obtain fast and robust results.
This allows focusing on the elaborated algorithm, not on the underlying datastructure;

• using generic programming to reuse existing data structures and algorithms;

• using a standard library in order to benefit from existing support and discussion groups1.

2 Prerequisites

Before using CGAL, it is mandatory to be familiar with C++ and thegeneric programming paradigm. The
latter features the notion of C++ class templates and function templates, whichis at the corner stone of all
features provided by CGAL.

1see the cgal discuss list:http://www.cgal.org/usersupport.html.

http://www.cgal.org/user_support.html

An example illustrating generic programming is the Standard Template Library (STL) [?]. Generality
and flexibility is achieved with a set ofconcepts, where a concept is a well defined set of requirements. One
of them is theiterator concept, which allows both referring to an item and traversing a sequenceof items.
Those items are stored in a data structure calledcontainerin STL. Another concept, so-calledcirculator,
allows traversing some circular sequences. They share most of the requirements with iterators, except the
lack of past-the-end position in the sequence. Since CGAL is strongly inspired from the genericity of STL,
it is important to become familiar with its concepts before starting using it.

3 Halfedge data structure

The specification of a polygon surface mesh consists of combinatorial entities: vertices, edges, and faces,
and numerical quantities: attributes such as vertex positions, vertex normals, texture coordinates, face
colors, etc. Theconnectivitydescribes the incidences between elements and is implied by the topology of
the mesh. For example, two vertices or two faces are adjacent if there exists an edge incident to both.

A halfedge data structureis an edge-centered data structure capable of maintaining incidence infor-
mations of vertices, edges and faces, for example for planar maps, polyhedra, or other orientable, two-
dimensional surfaces embedded in arbitrary dimension. Each edge is decomposed into two halfedges with
opposite orientations. One incident face and one incident vertex are stored in each halfedge. For each face
and each vertex, one incident halfedge is stored (see Fig.2).

Figure 2 –One halfedge and its incident primitives.

Notice that the halfedge data structure is only a combinatorial data structure, geometric interpre-
tation being added by classes built on top of the halfedge data structure. Onexample is the class
CGAL::Polyhedron3 used in this tutorial. The halfedge data structure has been very successful for the
design of algorithms on meshes for several reasons:

• an edge-based data structure leads to a constant size structure, contrary to face-based data structures
with inevitable variable topological structure when dealing with arbitrary vertex valence and face
degrees.

• a halfedge encodes the orientation of an edge, facilitating the mesh traversal.

• navigation around each vertex by visiting all surrounding edges or faces is made easy.

• each halfedge can be associated with a unique corner, that is a couple{face,vertex}. The storage of
attributes such as normals or texture coordinates per corner (instead ofper vertex) is thus allowed.

4 Polyhedron Data Structure
The classPolyhedron_3 can represent polygon meshes2. Its underlying combinatorial component is
based on the halfedge data structure. As all CGAL geometric entities, its geometric component is templated
by thekernel3.

4.1 Declaration
The simplest declaration of the polyhedron (without extended primitives)consists of templating with a
cartesian kernel and double number precision:

// instanciation of a polyhedron

#include <CGAL/Cartesian.h>
#include <CGAL/Polyhedron_3.h>

typedef CGAL::Cartesian<double> kernel;
typedef CGAL::Polyhedron_3<kernel> Polyhedron;

Polyhedron p;

4.2 Extending primitives
The polyhedron can be parameterized by atraits class in order to extend the vertex, halfedge and facet
primitives. In this tutorial all primitives (facets, halfedges and vertices)are extended. The facet is extended
with a normal and with a general-purpose integer tag:

template <class Refs, class T, class P, class Norm>
class Enriched_facet :

public CGAL::HalfedgeDS_face_base<Refs, T>
{

// tag
int m_tag;

// normal
Norm m_normal;

public:

// no constructors to repeat, since only
// default constructor mandatory
Enriched_facet()
{
}

// tag
const int& tag() { return m_tag; }
void tag(const int& t) { m_tag = t; }

// normal
typedef Norm Normal_3;
Normal_3& normal() { return m_normal; }
const Normal_3& normal() const { return m_normal; }

};

The halfedge is extended with a general-purpose tag and a binary tag to indicate wether it belongs to the
control mesh or not. The latter tag is used to superimpose the control meshas shown in Fig.1.

template <class Refs, class Tprev, class Tvertex,
class Tface, class Norm>

class Enriched_halfedge : public

2http://www.cgal.org
3CGAL kernel

http://www.cgal.org/Manual/doc_html/basic_lib/Polyhedron_ref/Class_Polyhedron_3.html
http://www.CGAL.org/Manual/doc_html/frameset/fsKernel.html

CGAL::HalfedgeDS_halfedge_base<Refs,Tprev,Tvertex,T face>
{
private:

// tag
int m_tag;

// option for control edge superimposing
bool m_control_edge;

public:

// life cycle
Enriched_halfedge()
{

m_control_edge = true;
}

// tag
const int& tag() const { return m_tag; }
int& tag() { return m_tag; }
void tag(const int& t) { m_tag = t; }

// control edge
bool& control_edge() { return m_control_edge; }
const bool& control_edge() const { return m_control_edge; }
void control_edge(const bool& flag) { m_control_edge = fla g; }

};

The vertex is extended with a normal and a general-purpose integer tag:

template <class Refs, class T, class P, class Norm>
class Enriched_vertex :

public CGAL::HalfedgeDS_vertex_base<Refs, T, P>
{

// tag
int m_tag;

// normal
Norm m_normal;

public:
// life cycle
Enriched_vertex() {}
// repeat mandatory constructors
Enriched_vertex(const P& pt)

: CGAL::HalfedgeDS_vertex_base<Refs, T, P>(pt)
{
}

// normal
typedef Norm Normal_3;
Normal_3& normal() { return m_normal; }
const Normal_3& normal() const { return m_normal; }

// tag
int& tag() { return m_tag; }
const int& tag() const { return m_tag; }
void tag(const int& t) { m_tag = t; }

};

A redefined items class for the polyhedron uses the class wrapper mechanism to embedd all three ex-
tended primitives within one unique class.

struct Enriched_items : public CGAL::Polyhedron_items_3
{

// wrap vertex

template <class Refs, class Traits>
struct Vertex_wrapper
{

typedef typename Traits::Point_3 Point;
typedef typename Traits::Vector_3 Normal;
typedef Enriched_vertex<Refs,

CGAL::Tag_true,
Point,
Normal> Vertex;

};

// wrap face
template <class Refs, class Traits>
struct Face_wrapper
{

typedef typename Traits::Point_3 Point;
typedef typename Traits::Vector_3 Normal;
typedef Enriched_facet<Refs,

CGAL::Tag_true,
Point,
Normal> Face;

};

// wrap halfedge
template <class Refs, class Traits>
struct Halfedge_wrapper
{

typedef typename Traits::Vector_3 Normal;
typedef Enriched_halfedge<Refs,

CGAL::Tag_true,
CGAL::Tag_true,
CGAL::Tag_true,
Normal> Halfedge;

};
};

The trait class is then used for templating a polyhedronEnrichedpolyhedron:

template <class kernel, class items>
class Enriched_polyhedron :

public CGAL::Polyhedron_3<kernel,items>
{

//...
};

The corresponding instanciation of an enriched polyhedron follows:

#include <CGAL/Simple_cartesian.h>
#include "enriched_polyhedron.h"

typedef double number_type;
typedef CGAL::Simple_cartesian<number_type> kernel;

Enriched_polyhedron<kernel,Enriched_items> polyhedro n;

4.3 Iteration and Circulation
Theiterator STL concept allows traversing a sequence of items. This concept is applied to the primitives of
a mesh, be they halfedges, edges, vertices, facets or points. Notice that the order of iteration is not dictated
by any incidence relationship, contrary to the circulator. The following example shows how to iterate on the
mesh vertices.

Vertex_iterator iter;
for(iter = polyhedron.vertices_begin();

iter != polyhedron.vertices_end();
iter++)

{

Vertex_handle hVertex = iter;
// do something with hVertex

}

Thecirculator STL concept allows traversing a circular sequence of items. This concept is applied both
inside facets and around vertices.

Circulating around a facet The facets being defined by the circular sequence of halfedges along
their boundary, this calls for a circulator around a facet. The conventionis that the halfedges are oriented
counterclockwise around facets as seen from the outside of the polyhedron (see Fig.3, left).

// circulate around hFacet
Halfedge_around_facet_circulator circ = hFacet->facet_ begin();
Halfedge_around_facet_circulator end = circ;
CGAL_For_all(circ,end)
{

Halfedge_handle hHalfedge = circ;
// do something with hHalfedge

}

Circulating around a vertex The convention being that the halfedges are oriented counterclock-
wise around facets as seen from the outside of the polyhedron, this impliesthat the halfedges are oriented
clockwise around the vertices (see Fig.3, right).

// circulate around hVertex
Halfedge_around_vertex_circulator circ = hVertex->vert ex_begin();
Halfedge_around_vertex_circulator end = circ;
CGAL_For_all(circ,end)
{

Halfedge_handle hHalfedge = circ;
// do something with hHalfedge

}

Figure 3 –Left: circulation around a facet (ccw). Right: circulationaround a vertex (cw).

4.4 Mesh Editing
The polyhedron provides a series of atomic operators to modify the connectivity of the polyhedral surface:

• split or join of two facets,

• split or join of two vertices,

• split or join of two loops,

• split of an edge.

Furthermore, more operators are provided to work with surfaces with boundaries, to create or delete
holes, add a facet to the border, etc. We refere to the references manual for precise definitions and illustra-
tives figures4.

4SeeEuler operators

http://www.cgal.org/Manual/doc_html/basic_lib/Polyhedron/Chapter_main.html

4.5 Incremental Builder
The utility classPolyhedron_incremental_builder_3 helps in creating polyhedral surfaces
from a list of points followed by a list of facets that are represented as indices into the point list. This
is particularly useful for implementing file reader for common file formats. In Section 5.2, we use the
incremental builder to implement the quad-triangle subdivision scheme.

In the following example, the incremental builder is used to create a simple triangle.
Build_triangle is such a function object derived fromModifier_base<HalfedgeDS> . The
delegate() member function of the polyhedron accepts this function object and calls itsoperator()
with a reference to its internally used halfedge data structure. Thus, this member function in
Build_triangle can create the triangle in the halfedge data structure.
// examples/Polyhedron/polyhedron_prog_incr_builder. C

#include <CGAL/Cartesian.h>
#include <CGAL/Polyhedron_incremental_builder_3.h>
#include <CGAL/Polyhedron_3.h>

// A modifier creating a triangle with
// the incremental builder.

template <class HDS>
class Build_triangle

: public CGAL::Modifier_base<HDS>
{
public:

Build_triangle() {}

void operator()(HDS& hds)
{

// Postcondition: ‘hds’ is a valid polyhedral surface.
CGAL::Polyhedron_incremental_builder_3<HDS> B(hds, tr ue);
B.begin_surface(3, 1, 6);
typedef typename HDS::Vertex Vertex;
typedef typename Vertex::Point Point;
B.add_vertex(Point(0, 0, 0));
B.add_vertex(Point(1, 0, 0));
B.add_vertex(Point(0, 1, 0));
B.begin_facet();
B.add_vertex_to_facet(0);
B.add_vertex_to_facet(1);
B.add_vertex_to_facet(2);
B.end_facet();
B.end_surface();

}
};

typedef CGAL::Cartesian<double> Kernel;
typedef CGAL::Polyhedron_3<Kernel> Polyhedron;
typedef Polyhedron::HalfedgeDS HalfedgeDS;

Polyhedron P;
Build_triangle<HalfedgeDS> triangle;
P.delegate(triangle);
CGAL_assertion(P.is_triangle(P.halfedges_begin()));

5 Subdivision Surfaces
A subdivision surface is the limit surface resulting from the application of asubdivision schemeto a control
polyhedron (see Fig.1). During this process the polygon base mesh is recursively subdivided and the mesh
geometry is progressively modified according to subdivision rules. A subdivision scheme is characterized
by a refinement operator that acts on the connectivity by subdividing themesh, and by a smoothing operator
that modifies the geometry.

Figure. 4 introduces several refinement schemes in practice. Some general properties of these refinement
schemes areregular pattern, rotationally symmetricand welldefined footprintof each vertex in the range.
Figure. 5 demonstrates the functional map from the footprint in the domainmesh to the vertex in the range
mesh of the primal quadrilateral quadrisection scheme. The geometry rules of a specific refinement scheme
is hence defined according to the corresponding functional maps.

(a) Primal quadrilateral quadrisection. (b) Primal triangle quadrisection.

(c) Dual quadrilateral quadrisection.

Figure 4 –Refinement schemes. (Left) indicates the domain mesh. (Right) indicates the range mesh.

func(vertex) −> vertex

func(facet) −> vertex

func(edge) −> vertex

Figure 5 –The correspondence of the domain footprint and the range vertex of the PQQ schemes

Any implementation of a subdivision scheme contains two major components: refinement schemeand
geometry rules. Refinement schemes are defined by theuniform connectivity reconfigurationof the source
mesh (the domain) to the target mesh (the range). The geometry rules, providing certain surface properties,
e.g the smoothness, are the mapping functions of thefootprints in the domain mesh to theverticesin the
range mesh. Any subdivision in practice can be defined as a legal combination of a refinement scheme and
the geometry rules. Based on the paradigm of thepolicy-based design[?], the combination can be designed
as thehost function(the refinement function) templated with thepolicy class(the geometry rules).

5.1
√

3-Subdivision using Euler Operators

The
√

3 subdivision scheme was introduced by Kobbelt [?]. It takes as input a triangle mesh and subdivide
each facet into three triangles by splitting it at its centroid. Next, all edges ofthe initial mesh are flipped so
that they join two adjacent centroids. Finally, each initial vertex is replaced by a barycentric combination

of its neighbors. An example of one step of the
√

3 subdivision scheme is shown in Fig.6, and an example
of several steps is shown in Fig.7.

Figure 6 –The
√

3-Subdivision scheme is decomposed as a set of Euler operators: face splits and edge
flips.

Figure 7 –
√

3-Subdivision of the mannequin mesh.

5.2 Quad-triangle Subdivision using Incremental Builder
The quad-triangle subdivision scheme was introduced by Levin [?], then Stam and Loop [?]. It applies
to polygon meshes and basically features Loop subdivision on triangles and Catmull-Clark subdivision
on polygons of the control mesh (see Fig.8). After one iteration of subdivision the subdivided model is
only composed of triangles and quads. A simple solution for implementing such a scheme is to use the
incremental builderconcept featured by CGAL Polyhedron (see Section 4.5).

Figure 8 –Quad-triangle subdivision scheme.

Subdivision engine

#include "enriched_polyhedron.h"
#include "builder.h"

template <class HDS,class Polyhedron,class kernel>
class CModifierQuadTriangle : public CGAL::Modifier_bas e<HDS>
{
private:

typedef ...

Polyhedron *m_pMesh;

public:

// life cycle
CModifierQuadTriangle(Polyhedron *pMesh)
{

CGAL_assertion(pMesh != NULL);
m_pMesh = pMesh;

}
˜CModifierQuadTriangle() {}

// subdivision
void operator()(HDS& hds)
{

builder B(hds,true);
B.begin_surface(3,1,6);

add_vertices(B);
add_facets(B);

B.end_surface();
}

private:

// ...
// for the complete implementation of the subdivision,
// readers should refer to the accompanied source codes of
// this tutorial.

};

template <class Polyhedron,class kernel>

class CSubdivider_quad_triangle
{
public:

typedef typename Polyhedron::HalfedgeDS HalfedgeDS;

public:
// life cycle
CSubdivider_quad_triangle() {}
˜CSubdivider_quad_triangle() {}

public:
void subdivide(Polyhedron &OriginalMesh,

Polyhedron &NewMesh,
bool smooth_boundary = true)

{
CModifierQuadTriangle<HalfedgeDS,Polyhedron,kernel>

builder(&OriginalMesh);

// delegate construction
NewMesh.delegate(builder);

// smooth
builder.smooth(&NewMesh,smooth_boundary);

}
};

5.3 Subdivision using a rule template
We use Catmull-Clark (CC) subdivision as our first example (see Figure9). CC subdivision can be defined
as the combination of the primal quadrilateral quadrisection (PQQ) scheme and the Catmull-Clark geometry
rules.

template <class Polyhedron, template <class> Rule>
void PrimalQuadQuadralize(Polyhedron& p, Rule<Polyhedr on>& r) { ...}

template <class Polyhedron>
void CCSubdivision(Polyhedron& p) {

PrimalQuadQuadralize(p, CatmullClarkRule<Polyhedron> ());
}

For meshes based on PQQ scheme, the footprints of the range vertices each corresponds to a topology
primitive, i.e. vertex, edge or facet, in the domain (see Figure. 5). Thepolicy class hence needs to provide
the policy functions in each case.

template <class P> class CatmullClarkRule
{
public:

typedef P Polyhedron;
typedef typename Polyhedron::Vertex_handle Vertex_hand le;
typedef typename Polyhedron::Halfedge_handle Halfedge_ handle;
typedef typename Polyhedron::Facet_handle Facet_handle ;

void face_vertex_rule(Facet_handle domain_f, Vertex_ha ndle range_v);
void edge_vertex_rule(Halfedge_handle domain_e, Vertex _handle range_v);
void vertex_vertex_rule(Vertex_handle domain_v, Vertex _handle range_v);

};

Each policy function has two input parameters: the domain primitive and therange vertex. The footprint,
defined as the vertices set of the 1-distance neighbors of the corresponding domain primitive, is passed as
the handle of the primitive. Empolying the incidental function of the halfedgedata structure, the policy
designer works on the simple view of thelocal mesh corresponding to the footprint. Following codes
demonstrate the facet-vertex case.

void facet_vertex_rule(Facet_handle domain_f, Vertex_h andle& range_v)
{

typedef typename Polyhedron::Point_3 Point;

Halfedge_around_facet_circulator hcir = domain_f->face t_begin();

Halfedge_around_facet_circulator hcir_end = hcir;
range_v->point() = Point(0,0,0);
do

range_v->point() += hcir->vertex()->point();
while (++hcir != hcir_end);

range_v->point() /= circulator_size(hcir);
}

Figure 9 –Catmull-Clark subdivision of a quadrilateral control mesh.

Loop subdivision uses similar refinement scheme to PQQ scheme except that it works on the triangle
mesh. Hence the footprints of Loop scheme are same as the CC scheme but without the facet-vertex case.

PrimalTriangleQuadralize(p, LoopRule<Polyhedron>());

template <class Polyhedron>
void LoopSubdivision(Polyhedron& p)
{

PrimalTriangleQuadralize(p, LoopRule<Polyhedron>());
}

template <class P> class LoopRule
{
public:

typedef ...

void edge_vertex_rule(Halfedge_handle domain_e, Vertex _handle range_v);
void vertex_vertex_rule(Vertex_handle domain_v, Vertex _handle range_v);

};

Doo-Sabin (DS) subdivision is fundamentally different from the primalsubdivision schemes in the
aspect of the footprints. As showed in Figure 5, each range vertex corresponds to acorner in the domain
mesh. The footprint of the range vertex is the facet containing the corner.

func(corner) −> vertex

Figure 10 –The correspondence of the domain footprint and the range vertex of the DQQ schemes.

DualQuadQuadralize(p, DooSabinRule<Polyhedron>());

template <class Polyhedron>
void DSSubdivision(Polyhedron& p)
{

DualQuadQuadralize(p, DooSabinRule<Polyhedron>());
}

template <class P> class DooSabinRule
{
public:

typedef ...

void corner_vertex_rule(Halfedge_handle domain_e, Vert ex_handle range_v);
};

The only policy function for the DS subdivision has the halfedge pointing to the corner as the domain
parameter. A demo of policy function for the regular facet, i.e. the quadrilateral facet, is listed in the
following codes.
void corner_vertex__rule(Halfedge_handle domain_e, Ver tex_handle range_v)
{

range_v->point() = Point(0,0,0);

range_v->point() = domain_e->vertex()->point() * 9 +
(domain_e->next()->vertex()->point() +

domain_e->pre()->vertex()->point()) * 3 +
domain_e->next()->next()->vertex()->point();

range_v->point() /= 16.0;
}

For the complete implementation of the subdivision, readers should referto the accompanied source
codes of this tutorial.

6 Application demo
The application demo runs on windows and features:

• A standard document-view architecture. Accepted file formats are ASCII off and obj (1-based vertex
indices for the latter).

• An OpenGL-based viewer.

• An arcball for interaction.

• One menu dedicated to subdivision algorithms (shortcut ’s’ for quad-triangle scheme).

• Some rendering options accesible through the menu render or through the shortcut ’r’. Note that
superimposing the control edges during subdivision is only available forthe quad-triangle subdivision
scheme.

• A 24-bits raster image output to the clipboard (short-cut ctrl+c),

• A vectorial output to an .eps file (menu file/dump to eps), editable withe.g., Adobe Illustrator.

• One functionality to display two models with the same viewpoint (copy and pasteviewpoint).

6.1 Compiling on Windows
The application has been compiled on MS .NET 2003 using CGAL 3.0, OpenGL and MFC. The following
steps are necessary to compile:

• Install CGAL 3.0.

• Define an environment variable CGAL3 with the path to the CGAL-3.0 folder.

• Compile the CGAL library in multithread mode and name the output libraries resp. cgalmt debug.lib
and cgalmt release.lib for resp. the debug and the release mode.

• Check your path to the library in the MS .NET project properties.

• Rebuild all.

	Introduction
	Prerequisites
	Halfedge data structure
	Polyhedron Data Structure
	Declaration
	Extending primitives
	Iteration and Circulation
	Mesh Editing
	Incremental Builder

	Subdivision Surfaces
	3-Subdivision using Euler Operators
	Quad-triangle Subdivision using Incremental Builder
	Subdivision using a rule template

	Application demo
	Compiling on Windows

