// Copyright (c) 1999 Martin-Luther-University Halle-Wittenberg (Germany). // All rights reserved. // // This file is part of CGAL (www.cgal.org); you may redistribute it under // the terms of the Q Public License version 1.0. // See the file LICENSE.QPL distributed with CGAL. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // // // Author(s) : Matthias Baesken, Algorithmic Solutions #ifndef CGAL_WINDOW_BASIC_H #define CGAL_WINDOW_BASIC_H // include system config file #if defined(CGAL_USE_CGAL_HEADERS) #include #else #if !defined(CGAL_CLIB_STD) #if defined(_MSC_VER) #define CGAL_CLIB_STD #else #define CGAL_CLIB_STD std #endif #endif #endif #include // include std header files #include #include #include #include #include #include // include basic LEDA headers #include #include namespace CGAL { extern __exportF void leda_wait(double sec); /*{\Mfunc suspends execution for $sec$ seconds.}*/ // maximal and minimal values for some numerical types inline int Max_Value(int& x) { return x = MAXINT; } inline int Min_Value(int& x) { return x = -MAXINT; } inline double Max_Value(double& x) { return x = MAXDOUBLE;} inline double Min_Value(double& x) { return x = -MAXDOUBLE;} extern __exportF double truncate(double x, int k = 10); /*{\Mfunc returns a double whose mantissa is truncated after $k-1$ bits after the binary point, i.e, if $x \not= 0$ then the binary representation of the mantissa of the result has the form d.dddddddd, where the number of d's is equal to $k$. There is a corresponding function for |integers|; it has no effect.}*/ } #endif