// Copyright (c) 2014 INRIA Sophia-Antipolis (France). // All rights reserved. // // This file is part of CGAL (www.cgal.org); you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public License as // published by the Free Software Foundation; either version 3 of the License, // or (at your option) any later version. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // // Author(s) : Jocelyn Meyron and Quentin Mérigot // #ifndef CGAL_EIGEN_DIAGONALIZE_TRAITS_H #define CGAL_EIGEN_DIAGONALIZE_TRAITS_H #include #include // If the matrix to diagonalize is of dimension 2x2 or 3x3, Eigen // provides a faster implementation using a closed-form // algorithm. However, it offers less precision. See: // https://eigen.tuxfamily.org/dox/classEigen_1_1SelfAdjointEigenSolver.html // This is usually acceptable for CGAL algorithms but one might want // to use the slower but more accurate version. In that case, just // uncomment the following line: //#define DO_NOT_USE_EIGEN_COMPUTEDIRECT_FOR_DIAGONALIZATION #include namespace CGAL { /// A model of the concept `DiagonalizeTraits` using \ref thirdpartyEigen. /// \cgalModels `DiagonalizeTraits` template class Eigen_diagonalize_traits{ public: typedef cpp11::array Vector; typedef cpp11::array Matrix; typedef cpp11::array Covariance_matrix; private: typedef Eigen::Matrix EigenMatrix; typedef Eigen::Matrix EigenVector; // Construct the covariance matrix static EigenMatrix construct_covariance_matrix (const Covariance_matrix& cov) { EigenMatrix m; for (std::size_t i = 0; i < dim; ++ i) for (std::size_t j = i; j < dim; ++ j) { m(i,j) = static_cast(cov[(dim * i) + j - ((i * (i+1)) / 2)]); if (i != j) m(j,i) = m(i,j); } return m; } // Diagonalize a selfadjoint matrix static bool diagonalize_selfadjoint_matrix (EigenMatrix& m, EigenMatrix& eigenvectors, EigenVector& eigenvalues) { Eigen::SelfAdjointEigenSolver eigensolver; #ifndef DO_NOT_USE_EIGEN_COMPUTEDIRECT_FOR_DIAGONALIZATION if (dim == 2 || dim == 3) eigensolver.computeDirect(m); else #endif eigensolver.compute(m); if (eigensolver.info() != Eigen::Success) { return false; } eigenvalues = eigensolver.eigenvalues(); eigenvectors = eigensolver.eigenvectors(); return true; } public: static bool diagonalize_selfadjoint_covariance_matrix( const Covariance_matrix& cov, Vector& eigenvalues) { EigenMatrix m = construct_covariance_matrix(cov); // Diagonalizing the matrix EigenVector eigenvalues_; EigenMatrix eigenvectors_; bool res = diagonalize_selfadjoint_matrix(m, eigenvectors_, eigenvalues_); if (res) { for (std::size_t i = 0; i < dim; ++ i) eigenvalues[i] = static_cast(eigenvalues_[i]); } return res; } static bool diagonalize_selfadjoint_covariance_matrix( const Covariance_matrix& cov, Vector& eigenvalues, Matrix& eigenvectors) { EigenMatrix m = construct_covariance_matrix(cov); // Diagonalizing the matrix EigenVector eigenvalues_; EigenMatrix eigenvectors_; bool res = diagonalize_selfadjoint_matrix(m, eigenvectors_, eigenvalues_); if (res) { for (std::size_t i = 0; i < dim; ++ i) { eigenvalues[i] = static_cast(eigenvalues_[i]); for (std::size_t j = 0; j < dim; ++ j) eigenvectors[dim*i + j]=static_cast(eigenvectors_(j,i)); } } return res; } // Extract the eigenvector associated to the largest eigenvalue static bool extract_largest_eigenvector_of_covariance_matrix ( const Covariance_matrix& cov, Vector& normal) { // Construct covariance matrix EigenMatrix m = construct_covariance_matrix(cov); // Diagonalizing the matrix EigenVector eigenvalues; EigenMatrix eigenvectors; if (! diagonalize_selfadjoint_matrix(m, eigenvectors, eigenvalues)) { return false; } // Eigenvalues are sorted by increasing order for (unsigned int i = 0; i < dim; ++ i) normal[i] = static_cast (eigenvectors(i,dim-1)); return true; } }; } // namespace CGAL #endif // CGAL_EIGEN_DIAGONALIZE_TRAITS_H