// ============================================================================ // // Copyright (c) 2000 The CGAL Consortium // // This software and related documentation is part of an INTERNAL release // of the Computational Geometry Algorithms Library (CGAL). It is not // intended for general use. // // ---------------------------------------------------------------------------- // // release : $CGAL_Revision $ // release_date : $CGAL_Date $ // // file : include/CGAL/Rotation_tree_2.h // package : $CGAL_Package: Partition_2 $ // maintainer : Susan Hert // chapter : Planar Polygon Partitioning // // revision : $Revision$ // revision_date : $Date$ // // author(s) : Susan Hert // // coordinator : MPI (Susan Hert ) // // implementation: Rotation tree for vertex visibility graph computation // ============================================================================ /* A rotation tree for computing the vertex visibility graph of a set of non-intersecting segments in the plane (e.g. edges of a polygon). Let $V$ be the set of segment endpoints and let $p_{\infinity}$ ($p_{-\infinity}$) be a point with $y$ coordinate $\infinity$ ($-\infinity$) and $x$ coordinate larger than all points in $V$. The tree $G$ is a tree with node set $V \cup \{p_{\infinity}, p_{-\infinity}\}$. Every node (except the one corresponding to $p_{\infinity}$) has exactly one outgoing edge to the point $q$ with the following property: $q$ is the first point encountered when looking from $p$ in direction $d$ and rotating counterclockwise. */ #ifndef CGAL_ROTATION_TREE_H #define CGAL_ROTATION_TREE_H // MSVC6 doesn't work with the CGALi::vector but it does with the std::vector // (from stlport?) #if (defined( _MSC_VER) && (_MSC_VER <= 1200)) || defined(__BORLANDC__) #include #else #include #endif // MSVC6 #include #include namespace CGAL { template #if (defined( _MSC_VER) && (_MSC_VER <= 1200)) || defined(__BORLANDC__) class Rotation_tree_2 : public std::vector< Rotation_tree_node_2 > #else class Rotation_tree_2 : public CGALi::vector< Rotation_tree_node_2 > #endif // MSVC 6 { public: typedef Traits_ Traits; typedef Rotation_tree_node_2 Node; #if (defined( _MSC_VER) && (_MSC_VER <= 1200)) || defined(__BORLANDC__) typedef typename std::vector::iterator Self_iterator; #else typedef typename CGALi::vector::iterator Self_iterator; #endif // MSVC6 typedef typename Traits::Point_2 Point_2; // constructor template Rotation_tree_2(ForwardIterator first, ForwardIterator beyond) { for (ForwardIterator it = first; it != beyond; it++) push_back(*it); std::sort(begin(), end(), swap_1(Traits().less_xy_2_object())); std::unique(begin(), end()); // b is the point with the largest x coordinate Node largest_x = front(); // push the point p_minus_infinity; the coordinates should never be used push_back(Point_2( 1, -1)); // push the point p_infinity; the coordinates should never be used push_back(Point_2(1, 1)); _p_inf = end(); // record the iterators to these extreme points _p_inf--; _p_minus_inf = _p_inf; _p_minus_inf--; Self_iterator child; // make p_minus_inf a child of p_inf set_rightmost_child(_p_minus_inf, _p_inf); child = begin(); // now points to p_0 while (child != _p_minus_inf) // make all points children of p_minus_inf { set_rightmost_child(child, _p_minus_inf); child++; } } // the point that comes first in the right-to-left ordering is first // in the ordering, after the auxilliary points p_minus_inf and p_inf Self_iterator rightmost_point_ref() { return begin(); } Self_iterator right_sibling(Self_iterator p) { if (!(*p).has_right_sibling()) return end(); return (*p).right_sibling(); } Self_iterator left_sibling(Self_iterator p) { if (!(*p).has_left_sibling()) return end(); return (*p).left_sibling(); } Self_iterator rightmost_child(Self_iterator p) { if (!(*p).has_children()) return end(); return (*p).rightmost_child(); } Self_iterator parent(Self_iterator p) { if (!(*p).has_parent()) return end(); return (*p).parent(); } bool parent_is_p_infinity(Self_iterator p) { return parent(p) == _p_inf; } bool parent_is_p_minus_infinity(Self_iterator p) { return parent(p) == _p_minus_inf; } // makes *p the parent of *q void set_parent (Self_iterator p, Self_iterator q) { CGAL_assertion(q != end()); if (p == end()) (*q).clear_parent(); else (*q).set_parent(p); } // makes *p the rightmost child of *q void set_rightmost_child(Self_iterator p, Self_iterator q); // makes *p the left sibling of *q void set_left_sibling(Self_iterator p, Self_iterator q); // makes *p the right sibling of *q void set_right_sibling(Self_iterator p, Self_iterator q); // NOTE: this function does not actually remove the node p from the // list; it only reorganizes the pointers so this node is not // in the tree structure anymore void erase(Self_iterator p); private: Self_iterator _p_inf; Self_iterator _p_minus_inf; }; } #ifdef CGAL_CFG_NO_AUTOMATIC_TEMPLATE_INCLUSION #include #endif // CGAL_CFG_NO_AUTOMATIC_TEMPLATE_INCLUSION #endif // CGAL_ROTATION_TREE_H